login
A295073
Expansion of 1/(1 - x/(1 - x^5/(1 - x^14/(1 - x^30/(1 - x^55/(1 - ... - x^(k*(k+1)*(2*k+1)/6)/(1 - ...))))))), a continued fraction.
1
1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 8, 11, 15, 20, 26, 34, 45, 60, 80, 107, 142, 188, 249, 330, 439, 584, 776, 1030, 1366, 1813, 2408, 3199, 4249, 5642, 7490, 9944, 13204, 17534, 23285, 30920, 41056, 54514, 72384, 96116, 127631, 169478, 225042, 298819, 396783, 526869, 699608, 928981, 1233552
OFFSET
0,7
FORMULA
G.f.: 1/(1 - x/(1 - x^5/(1 - x^14/(1 - x^30/(1 - x^55/(1 - ... - x^A000330(k)/(1 - ...))))))), a continued fraction.
a(n) ~ c * d^n, where d = 1.327852426419013789340602526081665378868516025761586390361772232517175463... and c = 0.366619510178622647108505347089605503045273798338613615745637268621... - Vaclav Kotesovec, Sep 18 2021
MATHEMATICA
nmax = 53; CoefficientList[Series[1/(1 + ContinuedFractionK[-x^(k (k + 1) (2 k + 1)/6), 1, {k, 1, nmax}]), {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 13 2017
STATUS
approved