login
A285408
Expansion of 1/(1 + x/(1 + x^4/(1 + x^9/(1 + x^16/(1 + x^25/(1 + ... + x^(k^2)/(1 + ...))))))), a continued fraction.
4
1, -1, 1, -1, 1, 0, -1, 2, -3, 3, -2, 0, 3, -6, 7, -6, 2, 5, -12, 17, -17, 9, 6, -24, 40, -45, 32, -1, -44, 89, -112, 97, -34, -72, 189, -272, 273, -153, -84, 380, -637, 723, -526, 22, 703, -1427, 1824, -1593, 575, 1126, -3041, 4423, -4461, 2562, 1251, -6096
OFFSET
0,8
EXAMPLE
G.f.: A(x) = 1 - x + x^2 - x^3 + x^4 - x^6 + 2*x^7 - 3*x^8 + 3*x^9 - 2*x^10 + ...
MATHEMATICA
nmax = 55; CoefficientList[Series[1/(1 + ContinuedFractionK[x^k^2, 1, {k, 1, nmax}]), {x, 0, nmax}], x]
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Apr 18 2017
STATUS
approved