OFFSET
0,6
COMMENTS
Number of compositions (ordered partitions) into centered square numbers (A001844).
Conjecture: every number > 1 is the sum of at most 6 centered square numbers.
Extended conjecture: every number > 1 is the sum of at most k+2 centered k-gonal numbers.
LINKS
Indranil Ghosh, Table of n, a(n) for n = 0..200
Eric Weisstein's World of Mathematics, Centered Square Number
FORMULA
G.f.: 1/(1 - Sum_{k>=0} x^(2*k*(k+1)+1)).
a(n) ~ c / r^n, where r = 0.746043978237212782246711857485153004976647... is the root of the equation sqrt(r) * EllipticTheta(2, 0, r^2) = 2 and c = 0.453173429667590077751072798128748901015122665... . - Vaclav Kotesovec, Feb 17 2017
EXAMPLE
a(8) = 5 because we have [5, 1, 1, 1], [1, 5, 1, 1], [1, 1, 5, 1], [1, 1, 1, 5] and [1, 1, 1, 1, 1, 1, 1, 1].
MATHEMATICA
nmax = 53; CoefficientList[Series[1/(1 - Sum[x^(2 k (k + 1) + 1), {k, 0, nmax}]), {x, 0, nmax}], x]
PROG
(PARI) Vec(1/(1 - sum(k=0, 54, x^(2*k*(k + 1) + 1))) + O(x^54)) \\ Indranil Ghosh, Mar 15 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 16 2017
STATUS
approved