The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A294407 Expansion of 1/(1 + Sum_{i>=1} q^(i^2)/Product_{j=1..i} (1 + q^j)^2). 5
 1, -1, 3, -8, 20, -51, 132, -339, 868, -2228, 5720, -14676, 37659, -96644, 248004, -636413, 1633144, -4190920, 10754580, -27598012, 70821032, -181738372, 466370429, -1196782952, 3071141180, -7881051500, 20224069573, -51898276576, 133179482008, -341760374284, 877013123076, -2250559385788 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Convolution inverse of the 3rd order mock theta function f(q) (A000025). LINKS Robert Israel, Table of n, a(n) for n = 0..2441 Eric Weisstein's World of Mathematics, Mock Theta Function FORMULA G.f.: 1/(1 + Sum_{i>=1} q^(i^2)/Product_{j=1..i} (1 + q^j)^2). MAPLE N:= 50: # to get a(0)..a(N) g:= 1/(1+add(q^(i^2)/mul(1+q^j, j=1..i)^2, i=1..floor(sqrt(N)))): S:= series(g, q, N+1): seq(coeff(S, q, n), n=0..N); # Robert Israel, Nov 06 2017 MATHEMATICA nmax = 31; CoefficientList[Series[1/(1 + Sum[q^(i^2)/Product[(1 + q^j)^2, {j, 1, i}], {i, 1, nmax}]), {q, 0, nmax}], q] CROSSREFS Cf. A000025, A000039, A000199, A010815. Sequence in context: A140662 A174198 A077997 * A295346 A027220 A305823 Adjacent sequences:  A294404 A294405 A294406 * A294408 A294409 A294410 KEYWORD sign AUTHOR Ilya Gutkovskiy, Oct 30 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 25 00:02 EDT 2020. Contains 337333 sequences. (Running on oeis4.)