login
A293352
Greatest integer k such that k/2^n < Euler's constant (0.577216...).
3
0, 1, 2, 4, 9, 18, 36, 73, 147, 295, 591, 1182, 2364, 4728, 9457, 18914, 37828, 75656, 151313, 302627, 605254, 1210508, 2421017, 4842035, 9684071, 19368143, 38736287, 77472575, 154945150, 309890300, 619780600, 1239561201, 2479122403, 4958244806, 9916489613
OFFSET
0,3
LINKS
FORMULA
a(n) = floor((r*2^n)), where r = Euler's constant (0.577216...).
a(n) = A293353(n) - 1.
MATHEMATICA
z = 120; r = EulerGamma;
Table[Floor[r*2^n], {n, 0, z}]; (* A293352 *)
Table[Ceiling[r*2^n], {n, 0, z}]; (* A293353 *)
Table[Round[r*2^n], {n, 0, z}]; (* A293354 *)
PROG
(PARI) for(n=0, 50, print1(floor(Euler*2^n), ", ")) \\ G. C. Greubel, Aug 29 2018
(Magma) R:= RealField(100); [Floor(EulerGamma(R)*2^n) : n in [0..50]]; // G. C. Greubel, Aug 29 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Oct 07 2017
STATUS
approved