login
A293354
The integer k that minimizes |k/2^n - r|, where r = Euler's constant (0.577216...).
3
1, 1, 2, 5, 9, 18, 37, 74, 148, 296, 591, 1182, 2364, 4729, 9457, 18914, 37828, 75657, 151314, 302627, 605254, 1210509, 2421018, 4842036, 9684072, 19368144, 38736288, 77472575, 154945150, 309890300, 619780601, 1239561202, 2479122403, 4958244807, 9916489614
OFFSET
0,3
LINKS
FORMULA
a(n) = floor(1/2 + r*2^n), where r = Euler's constant (0.577216...).
a(n) = A293352(n) if (fractional part of r*2^n) < 1/2, else a(n) = A293353(n).
MATHEMATICA
z = 120; r = EulerGamma;
Table[Floor[r*2^n], {n, 0, z}]; (* A293352 *)
Table[Ceiling[r*2^n], {n, 0, z}]; (* A293353 *)
Table[Round[r*2^n], {n, 0, z}]; (* A293354 *)
PROG
(PARI) for(n=0, 50, print1(round(Euler*2^n), ", ")) \\ G. C. Greubel, Aug 29 2018
(Magma) R:= RealField(100); [Round(EulerGamma(R)*2^n) : n in [0..50]]; // G. C. Greubel, Aug 29 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Oct 09 2017
STATUS
approved