login
Greatest integer k such that k/2^n < Euler's constant (0.577216...).
3

%I #10 Sep 08 2022 08:46:19

%S 0,1,2,4,9,18,36,73,147,295,591,1182,2364,4728,9457,18914,37828,75656,

%T 151313,302627,605254,1210508,2421017,4842035,9684071,19368143,

%U 38736287,77472575,154945150,309890300,619780600,1239561201,2479122403,4958244806,9916489613

%N Greatest integer k such that k/2^n < Euler's constant (0.577216...).

%H Clark Kimberling, <a href="/A293352/b293352.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = floor((r*2^n)), where r = Euler's constant (0.577216...).

%F a(n) = A293353(n) - 1.

%t z = 120; r = EulerGamma;

%t Table[Floor[r*2^n], {n, 0, z}]; (* A293352 *)

%t Table[Ceiling[r*2^n], {n, 0, z}]; (* A293353 *)

%t Table[Round[r*2^n], {n, 0, z}]; (* A293354 *)

%o (PARI) for(n=0,50, print1(floor(Euler*2^n), ", ")) \\ _G. C. Greubel_, Aug 29 2018

%o (Magma) R:= RealField(100); [Floor(EulerGamma(R)*2^n) : n in [0..50]]; // _G. C. Greubel_, Aug 29 2018

%Y Cf. A001620, A293353, A293354.

%K nonn,easy

%O 0,3

%A _Clark Kimberling_, Oct 07 2017