login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A292861 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. exp(k*(1 - exp(x))). 6
1, 1, 0, 1, -1, 0, 1, -2, 0, 0, 1, -3, 2, 1, 0, 1, -4, 6, 2, 1, 0, 1, -5, 12, -3, -6, -2, 0, 1, -6, 20, -20, -21, -14, -9, 0, 1, -7, 30, -55, -20, 24, 26, -9, 0, 1, -8, 42, -114, 45, 172, 195, 178, 50, 0, 1, -9, 56, -203, 246, 370, 108, -111, 90, 267, 0, 1, -10, 72, -328, 679, 318, -1105, -2388, -3072, -2382, 413, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,8

LINKS

Seiichi Manyama, Antidiagonals n = 0..139, flattened

FORMULA

A(0,k) = 1 and A(n,k) = -k * Sum_{j=0..n-1} binomial(n-1,j) * A(j,k) for n > 0.

A(n,k) = Sum_{j=0..n} (-k)^j * Stirling2(n,j). - Seiichi Manyama, Jul 27 2019

EXAMPLE

Square array begins:

   1,  1,   1,   1,   1,     1,     1, ...

   0, -1,  -2,  -3,  -4,    -5,    -6, ...

   0,  0,   2,   6,  12,    20,    30, ...

   0,  1,   2,  -3, -20,   -55,  -114, ...

   0,  1,  -6, -21, -20,    45,   246, ...

   0, -2, -14,  24, 172,   370,   318, ...

   0, -9,  26, 195, 108, -1105, -4074, ...

MAPLE

A:= proc(n, k) option remember; `if`(n=0, 1,

      -(1+add(binomial(n-1, j-1)*A(n-j, k), j=1..n-1))*k)

    end:

seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Sep 25 2017

CROSSREFS

Columns k=0..4 give A000007, A000587, A213170, A309084, A309085.

Rows n=0..1 give A000012, (-1)*A001477.

Main diagonal gives A292866.

Cf. A292860, A309386.

Sequence in context: A217315 A217593 A322279 * A292133 A304482 A309021

Adjacent sequences:  A292858 A292859 A292860 * A292862 A292863 A292864

KEYWORD

sign,tabl,look

AUTHOR

Seiichi Manyama, Sep 25 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 16:51 EDT 2019. Contains 328120 sequences. (Running on oeis4.)