This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A309085 a(n) = exp(4) * Sum_{k>=0} (-4)^k*k^n/k!. 3
 1, -4, 12, -20, -20, 172, 108, -2388, -3220, 47532, 161900, -1062740, -8532628, 13623212, 431041132, 1206169260, -17833021588, -169685043796, 180187176044, 13462762665132, 79377664422252, -553096696140884, -11670986989785492, -44371854928405844, 829755609457185644 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..564 FORMULA G.f.: Sum_{j>=0} (-4)^j*x^j / Product_{k=1..j} (1 - k*x). E.g.f.: exp(4*(1 - exp(x))). a(n) = Sum_{k=0..n} (-4)^k * Stirling2(n,k). MATHEMATICA Table[Exp[4] Sum[(-4)^k k^n/k!, {k, 0, Infinity}], {n, 0, 24}] Table[BellB[n, -4], {n, 0, 24}] nmax = 24; CoefficientList[Series[Sum[(-4)^j x^j/Product[(1 - k x), {k, 1, j}] , {j, 0, nmax}], {x, 0, nmax}], x] nmax = 24; CoefficientList[Series[Exp[4 (1 - Exp[x])], {x, 0, nmax}], x] Range[0, nmax]! PROG (MAGMA) [1] cat [(&+[((-4)^k*StirlingSecond(m, k)):k in [0..m]]):m in [1..24]]; // Marius A. Burtea, Jul 11 2019 (PARI) a(n) = sum(k=0, n, (-4)^k * stirling(n, k, 2)); \\ Michel Marcus, Jul 12 2019 CROSSREFS Column k = 4 of A292861. Cf. A000587, A078944, A213170, A309084, A318179. Sequence in context: A239662 A321769 A133096 * A104814 A050426 A061820 Adjacent sequences:  A309082 A309083 A309084 * A309086 A309087 A309088 KEYWORD sign AUTHOR Ilya Gutkovskiy, Jul 11 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 18 17:45 EDT 2019. Contains 327178 sequences. (Running on oeis4.)