login
A291529
Number F(n,h,t) of forests of t (unlabeled) rooted identity trees with n vertices such that h is the maximum of 0 and the tree heights; triangle of triangles F(n,h,t), n>=0, h=0..n, t=0..n-h, read by layers, then by rows.
7
1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 2, 3, 0, 0, 3, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 2, 5, 1, 0, 0, 5, 4, 0, 0, 4, 1, 0, 1, 0
OFFSET
0,49
COMMENTS
Positive row sums per layer (and - with a different offset - positive elements in column t=1) give A227819.
Positive column sums per layer give A227774.
LINKS
FORMULA
Sum_{d=0..n} Sum_{i=0..d} F(n,i,d-i) = A004111(n+1).
Sum_{h=0..n} Sum_{t=0..n-h} t * F(n,h,t) = A291532(n).
Sum_{h=0..n-2} Sum_{t=1..n-1-h} (h+1) * F(n-1,h,t) = A291559(n).
F(n,0,0) = A000007(n).
EXAMPLE
n h\t: 0 1 2 3 4 5 : A227819 : A227774 : A004111
-----+-------------+---------+-----------+--------
0 0 : 1 : : : 1
-----+-------------+---------+-----------+--------
1 0 : 0 1 : 1 : . :
1 1 : 0 : : 1 : 1
-----+-------------+---------+-----------+--------
2 0 : 0 0 0 : 0 : . . :
2 1 : 0 1 : 1 : . :
2 2 : 0 : : 1 0 : 1
-----+-------------+---------+-----------+--------
3 0 : 0 0 0 0 : 0 : . . . :
3 1 : 0 0 1 : 1 : . . :
3 2 : 0 1 : 1 : . :
3 3 : 0 : : 1 1 0 : 2
-----+-------------+---------+-----------+--------
4 0 : 0 0 0 0 0 : 0 : . . . . :
4 1 : 0 0 0 0 : 0 : . . . :
4 2 : 0 1 1 : 2 : . . :
4 3 : 0 1 : 1 : . :
4 4 : 0 : : 2 1 0 0 : 3
-----+-------------+---------+-----------+--------
5 0 : 0 0 0 0 0 0 : 0 : . . . . . :
5 1 : 0 0 0 0 0 : 0 : . . . . :
5 2 : 0 0 2 0 : 2 : . . . :
5 3 : 0 2 1 : 3 : . . :
5 4 : 0 1 : 1 : . :
5 5 : 0 : : 3 3 0 0 0 : 6
-----+-------------+---------+-----------+--------
MAPLE
b:= proc(n, i, t, h) option remember; expand(`if`(n=0 or h=0 or i=1,
`if`(n<2, x^(t*n), 0), b(n, i-1, t, h)+add(x^(t*j)*binomial(
b(i-1$2, 0, h-1), j)*b(n-i*j, i-1, t, h), j=1..n/i)))
end:
g:= (n, h)-> b(n$2, 1, h)-`if`(h=0, 0, b(n$2, 1, h-1)):
F:= (n, h, t)-> coeff(g(n, h), x, t):
seq(seq(seq(F(n, h, t), t=0..n-h), h=0..n), n=0..10);
MATHEMATICA
b[n_, i_, t_, h_] := b[n, i, t, h] = Expand[If[n == 0 || h == 0 || i == 1, If[n < 2, x^(t*n), 0], b[n, i - 1, t, h] + Sum[x^(t*j)*Binomial[b[i - 1, i - 1, 0, h - 1], j]*b[n - i*j, i - 1, t, h], {j, 1, n/i}]]];
g[n_, h_] := b[n, n, 1, h] - If[h == 0, 0, b[n, n, 1, h - 1]];
F[n_, h_, t_] := Coefficient[g[n, h], x, t];
Table[F[n, h, t], {n, 0, 10}, {h, 0, n}, {t, 0, n - h}] // Flatten (* Jean-François Alcover, Jun 04 2018, from Maple *)
KEYWORD
nonn,look,tabf
AUTHOR
Alois P. Heinz, Aug 25 2017
STATUS
approved