login
This site is supported by donations to The OEIS Foundation.

 

Logo

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A290911 p-INVERT of the positive integers, where p(S) = 1 - 6*S^2. 3
0, 6, 24, 96, 408, 1722, 7248, 30528, 128592, 541638, 2281416, 9609504, 40475976, 170487930, 718108320, 3024727680, 12740386464, 53663491206, 226034767224, 952075887072, 4010217126648, 16891344084282, 71147645118192, 299679373092288, 1262272651579632 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).

See A290890 for a guide to related sequences.

LINKS

Clark Kimberling, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (4, 0, 4, -1)

FORMULA

G.f.: (6 x)/(1 - 4 x - 4 x^3 + x^4).

a(n) = 4*a(n-1) + 4*a(n-3) - a(n-4).

a(n) = 6*A290912(n) for n >= 0.

MATHEMATICA

z = 60; s = x/(1 - x)^2; p = 1 - 6 s^2;

Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)

u = Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290911 *)

u/6 (* A290912 *)

CROSSREFS

Cf. A000027, A290890, A290912.

Sequence in context: A169759 A164908 A002023 * A037505 A048179 A117614

Adjacent sequences:  A290908 A290909 A290910 * A290912 A290913 A290914

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Aug 18 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 22 22:42 EDT 2018. Contains 315270 sequences. (Running on oeis4.)