login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A164908 a(n) = (3*4^n - 0^n)/2. 6
1, 6, 24, 96, 384, 1536, 6144, 24576, 98304, 393216, 1572864, 6291456, 25165824, 100663296, 402653184, 1610612736, 6442450944, 25769803776, 103079215104, 412316860416, 1649267441664, 6597069766656, 26388279066624 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Binomial transform of A164907. Inverse binomial transform of A057651.

Partial sums are in A083420.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Shalosh B. Ekhad, N. J. A. Sloane, and  Doron Zeilberger, A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata, arXiv:1503.01796, 2015; see also the Accompanying Maple Package.

Shalosh B. Ekhad, N. J. A. Sloane, and  Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.04249, 2015.

N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb. 05 2015: Part 1, Part 2

N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168, 2015

Index entries for sequences related to cellular automata

Index entries for linear recurrences with constant coefficients, signature (4).

FORMULA

a(n) = 4*a(n-1) for n > 1; a(0) = 1, a(1) = 6.

G.f.: (1+2*x)/(1-4*x).

MATHEMATICA

a[n_]:=(MatrixPower[{{2, 2}, {2, 2}}, n].{{2}, {1}})[[2, 1]]; Table[a[n], {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)

Join[{1}, (3*4^Range[25])/2] (* or *) Join[{1}, NestList[4#&, 6, 25]] (* Harvey P. Dale, Feb 14 2012 *)

PROG

(MAGMA) [ (3*4^n-0^n)/2: n in [0..22] ];

(PARI) a(n)=3*4^n\2 \\ Charles R Greathouse IV, Oct 12 2015

CROSSREFS

Equals 1 followed by A002023 (6*4^n). Essentially the same as A084509.

Cf. A164907, A057651, A083420 (2*4^n-1), A247640.

Sequence in context: A255476 A253101 A169759 * A002023 A037505 A048179

Adjacent sequences:  A164905 A164906 A164907 * A164909 A164910 A164911

KEYWORD

nonn,easy

AUTHOR

Klaus Brockhaus, Aug 31 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 9 14:23 EST 2016. Contains 278971 sequences.