login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290314
Fifth diagonal sequence of the Sheffer triangle A094816 (special Charlier).
2
1, 89, 814, 4179, 15659, 47775, 125853, 296703, 641058, 1290718, 2451449, 4432792, 7686042, 12851762, 20818302, 32792898, 50387031, 75717831, 111527416, 161322161, 229533997, 321705945, 444704195, 606959145, 818737920, 1092450996, 1442995659, 1888139134, 2448944324, 3150241204, 4021147020, 5095638548
OFFSET
0,2
COMMENTS
See A094816 and A290311.
LINKS
FORMULA
O.g.f.: (1 + 80*x + 49*x^2 - 27*x^3 + 2*x^4)/(1-x)^9.
E.g.f: exp(x)*(1 + 88*x + 637*x^2/2! + 2003*x^3/3! + 3472*x^4/4! + 3574*x^5/5! + 2185*x^6/6! + 735*x^7/7! + 105*x^8/8!).
From Colin Barker, Jul 29 2017: (Start)
a(n) = (5760 + 67248*n + 158180*n^2 + 161700*n^3 + 87695*n^4 + 26952*n^5 + 4670*n^6 + 420*n^7 + 15*n^8) / 5760.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>8.
(End)
PROG
(PARI) Vec((1 + 80*x + 49*x^2 - 27*x^3 + 2*x^4) / (1 - x)^9 + O(x^50)) \\ Colin Barker, Jul 29 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jul 28 2017
STATUS
approved