login
A290314
Fifth diagonal sequence of the Sheffer triangle A094816 (special Charlier).
2
1, 89, 814, 4179, 15659, 47775, 125853, 296703, 641058, 1290718, 2451449, 4432792, 7686042, 12851762, 20818302, 32792898, 50387031, 75717831, 111527416, 161322161, 229533997, 321705945, 444704195, 606959145, 818737920, 1092450996, 1442995659, 1888139134, 2448944324, 3150241204, 4021147020, 5095638548
OFFSET
0,2
COMMENTS
See A094816 and A290311.
LINKS
FORMULA
O.g.f.: (1 + 80*x + 49*x^2 - 27*x^3 + 2*x^4)/(1-x)^9.
E.g.f: exp(x)*(1 + 88*x + 637*x^2/2! + 2003*x^3/3! + 3472*x^4/4! + 3574*x^5/5! + 2185*x^6/6! + 735*x^7/7! + 105*x^8/8!).
From Colin Barker, Jul 29 2017: (Start)
a(n) = (5760 + 67248*n + 158180*n^2 + 161700*n^3 + 87695*n^4 + 26952*n^5 + 4670*n^6 + 420*n^7 + 15*n^8) / 5760.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>8.
(End)
PROG
(PARI) Vec((1 + 80*x + 49*x^2 - 27*x^3 + 2*x^4) / (1 - x)^9 + O(x^50)) \\ Colin Barker, Jul 29 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jul 28 2017
STATUS
approved