This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A290316 Triangle T(n, k) read by rows: row n gives the coefficients of the numerator polynomials of the o.g.f. of the (n+1)-th diagonal of the Sheffer triangle A282629 (S2[3,1] generalized Stirling 2), for n >= 0. 0
 1, 1, 6, 1, 48, 90, 1, 234, 2214, 2160, 1, 996, 27432, 114588, 71280, 1, 4062, 260748, 2791800, 6770628, 2993760, 1, 16344, 2178630, 48256344, 280652364, 454137840, 152681760, 1, 65490, 16966530, 691711920, 7846782660, 29157089832, 34236464400, 9160905600, 1, 262092, 126820980, 8851303620, 174637926180, 1219804572672, 3187159638984, 2871984146400, 632102486400, 1, 1048518, 924701832, 105253405560, 3359003385600, 39425596747272, 188635513271256, 369150976563264, 265665182896800, 49303993939200 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The ordinary generating function (o.g.f.) of the (n+1)-th diagonal sequence of the Sheffer triangle A282629 = (e^x, e^(3*x) - 1), called S2[3,1], is  GS2(3,1;n,x) = P(n, x)/(1 - 3*x)^(2*n+1), with the row polynomials P(n, x) = Sum_{k=0..n} T(n, k)*x^k, n >= 0. For the general case Sheffer S2[d,a] = (e^(a*x), e^(d*x) - 1) (with gcd(d,a) = 1, d >=0, a >= 0, and for d = 1 one takes a = 0) see a comment in A290315. For the computation of the exponential generating function (e.g.f.) of the o.g.f.s of the diagonal sequences of a Sheffer triangle (lower triangular matrix) via Lagrange's theorem see a comment and link in A290311. LINKS Wolfdieter Lang, On Generating functions of Diagonals Sequences of Sheffer and Riordan Number Triangles, arXiv:1708.01421 [math.NT], 2017. FORMULA T(n, k) = [x^k] P(n, x) with the numerator polynomials of the o.g.f. of the (n+1)-th diagonal sequence of the triangle A282629. See a comment above. EXAMPLE The triangle T(n, k) begins: n\k 0     1        2         3          4           5           6          7 ... 0:  1 1:  1     6 2:  1    48       90 3:  1   234     2214      2160 4:  1   996    27432    114588      71280 5:  1  4062   260748   2791800    6770628     2993760 6:  1 16344  2178630  48256344  280652364   454137840   152681760 7:  1 65490 16966530 691711920 7846782660 29157089832 34236464400 9160905600 ... n = 8: 1 262092 126820980 8851303620 174637926180 1219804572672 3187159638984 2871984146400 632102486400, n = 9: 1 1048518 924701832 105253405560 3359003385600 39425596747272 188635513271256 369150976563264 265665182896800 49303993939200. ... n = 3: The o.g.f. of the 4th diagonal sequence of A282629, [1, 255, 7380, ...], is P(3, x) = (1 + 234*x + 2214*x^2 + 2160*x^3)/(1 - 3*x)^7. CROSSREFS Cf. A282629, A290311, A290315. Sequence in context: A136235 A113392 A113387 * A090435 A136237 A308281 Adjacent sequences:  A290313 A290314 A290315 * A290317 A290318 A290319 KEYWORD nonn,tabl AUTHOR Wolfdieter Lang, Aug 08 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 13 17:09 EST 2019. Contains 329970 sequences. (Running on oeis4.)