login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A290311 Triangle T(n, k) read by rows: row n gives the coefficients of the row polynomials of the (n+1)-th diagonal sequence of the Sheffer triangle A094816 (special Poisson-Charlier). 5
1, 1, 0, 1, 3, -1, 1, 17, -2, -1, 1, 80, 49, -27, 2, 1, 404, 733, -153, -49, 9, 1, 2359, 7860, 1622, -1606, 150, 9, 1, 16057, 80715, 58965, -17840, -3876, 1163, -50, 1, 125656, 858706, 1150722, 47365, -175756, 18239, 2359, -267, 1, 1112064, 9710898, 19571174, 7548463, -3175846, -491809, 194777, -9884, -413 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

The o.g.f. of the (n+1)-th diagonal sequence of the Sheffer triangle (e^x, -(log(1-x))) (the product of two Sheffer triangles A007318*A132393 = Pascal*|Stirling1|) is P(n, x)/(1 - x)^{2*n+1}, for n >= 0., with the numerator polynomials P(n, x) = Sum_{k=0..n} T(n, k)*x^k.

O.g.f.'s for diagonal sequences of Sheffer matrices (lower triangular) can be computed via Lagrange's theorem. For the special case of Jabotinsky matrices (1, f(x)) this has been done by P. Bala (see the link under A112007), and the method can be generalized to Sheffer (g(x), f(x)), as shown in the W. Lang link given below.

LINKS

Table of n, a(n) for n=0..54.

Wolfdieter Lang, On Generating functions of Diagonal Sequences of Sheffer and Riordan Number Triangles, arXiv:1708.01421 [math.NT], August 2017.

FORMULA

T(n, k) = [x^n] P(n, x) with the numerator polynomials (in rising powers) of the o.g.f. of the (n+1)-th diagonal sequence of the triangle A094816. See the comment above.

EXAMPLE

The triangle T(n, k) begins:

n\k 0       1       2        3       4        5       6      7     8    9 ...

0:  1

1:  1       0

2:  1       3      -1

3:  1      17      -2       -1

4:  1      80      49      -27       2

5:  1     404     733     -153     -49        9

6:  1    2359    7860     1622   -1606      150       9

7:  1   16057   80715    58965  -17840    -3876    1163    -50

8:  1  125656  858706  1150722   47365  -175756   18239   2359  -267

9:  1 1112064 9710898 19571174 7548463 -3175846 -491809 194777 -9884 -413

...

n = 2: the o.g.f. of the third diagonal of triangle A094816, [1, 8, 29, 75, 160, ...] = A290312 is  (1 + 3*x - x^2)/(1 - x)^5.

MATHEMATICA

rows = 10; nmax = 30(*terms to find every gf*);

T = Table[(-1)^(n - k) Sum[Binomial[-j - 1, -n - 1] StirlingS1[j, k], {j, 0, n}], {n, 0, nmax}, {k, 0, nmax}];

row[n_] := FindGeneratingFunction[Diagonal[T, -n], x] // Numerator // CoefficientList[-#, x]&; row[0] = {1}; row[1] = {1, 0};

Table[row[n], {n, 0, rows-1}] // Flatten (* Jean-Fran├žois Alcover, Jan 26 2019 *)

CROSSREFS

Cf. A094816, A290312, A290313, A290314.

Sequence in context: A060325 A135021 A087987 * A322790 A176293 A176339

Adjacent sequences:  A290308 A290309 A290310 * A290312 A290313 A290314

KEYWORD

sign,tabl

AUTHOR

Wolfdieter Lang, Jul 28 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 17 20:36 EST 2020. Contains 330987 sequences. (Running on oeis4.)