login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A286782 Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section. 17
1, 1, 6, 3, 50, 45, 5, 518, 637, 161, 7, 6354, 9567, 3744, 414, 9, 89782, 156123, 80784, 14850, 880, 11, 1435330, 2781389, 1749969, 446706, 46150, 1651, 13, 25625910, 54043365, 39305685, 12641265, 1877925, 121275, 2835, 15, 505785122, 1141864959, 928825464, 354665628, 68167144, 6500086, 281792, 4556, 17, 10944711398, 26137086451, 23244466392, 10134495804, 2361060574, 297418362, 19443460, 595764, 6954, 19 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Row n>0 contains n terms.

T(n,k) is the number of Feynman's diagrams with k fermionic loops in the order n of the perturbative expansion in dimension zero for the vertex function in a many-body theory of fermions with two-body interaction (see Molinari link).

LINKS

Gheorghe Coserea, Rows n=0..123, flattened

Luca G. Molinari, Hedin's equations and enumeration of Feynman's diagrams, arXiv:cond-mat/0401500 [cond-mat.str-el], 2005.

FORMULA

A(x;t) = Sum_{n>=0} P_n(t)*x^n = 1 + x*s + 2*x^2 * deriv(s,x), where s(x;t) = A286781(x;t) and P_n(t) = Sum_{k=0..n-1} T(n,k)*t^k for n>0.

T(n+1,k) = (2*n+1)*A286781(n,k), A005416(n)=T(n,0), A088218(n)=P_n(-1).

EXAMPLE

A(x;t) = 1 + x + (6 + 3*t)*x^2 + (50 + 45*t + 5*t^2)*x^3 + ...

Triangle starts:

n\k  [0]       [1]       [2]       [3]       [4]      [5]     [6]    [7]

[0]  1;

[1]  1;

[2]  6,        3;

[3]  50,       45,       5;

[4]  518,      637,      161,      7;

[5]  6354,     9567,     3744,     414,      9;

[6]  89782,    156123,   80784,    14850,    880,     11;

[7]  1435330,  2781389,  1749969,  446706,   46150,   1651,   13;

[8]  25625910, 54043365, 39305685, 12641265, 1877925, 121275, 2835,  15;

[9]  ...

MATHEMATICA

max = 10; y0[x_, t_] = 1; y1[x_, t_] = 0; For[n = 1, n <= max, n++, y1[x_, t_] = (1 + x*y0[x, t] + 2*x^2*D[y0[x, t], x])*(1 - x*y0[x, t]*(1 - t))/(1 - x*y0[x, t])^2 + O[x]^n // Normal; y0[x_, t_] = y1[x, t]];

row[n_] := (2n+1) CoefficientList[Coefficient[y0[x, t], x, n], t];

T[0, 0] = 1; T[n_, k_] := row[n-1][[k+1]];

Table[T[n, k], {n, 0, max}, {k, 0, If[n == 0, 0, n-1]}] // Flatten (* Jean-Fran├žois Alcover, May 19 2017, adapted from PARI *)

PROG

(PARI)

A286781_ser(N, t='t) = {

  my(x='x+O('x^N), y0=1+O('x^N), y1=0, n=1);

  while(n++,

    y1 = (1 + x*y0 + 2*x^2*y0')*(1 - x*y0*(1-t))/(1-x*y0)^2;

    if (y1 == y0, break()); y0 = y1; );

  y0;

};

A286782_ser(N, t='t) = my(s=A286781_ser(N, t)); 1 + x*s + 2*x^2 * deriv(s, 'x);

concat(apply(p->Vecrev(p), Vec(A286782_ser(10))))

CROSSREFS

Sequence in context: A090138 A229130 A088390 * A054380 A324673 A324004

Adjacent sequences:  A286779 A286780 A286781 * A286783 A286784 A286785

KEYWORD

nonn,tabf

AUTHOR

Gheorghe Coserea, May 14 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 21 00:39 EDT 2019. Contains 325189 sequences. (Running on oeis4.)