login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A286781 Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section. 18
1, 2, 1, 10, 9, 1, 74, 91, 23, 1, 706, 1063, 416, 46, 1, 8162, 14193, 7344, 1350, 80, 1, 110410, 213953, 134613, 34362, 3550, 127, 1, 1708394, 3602891, 2620379, 842751, 125195, 8085, 189, 1, 29752066, 67168527, 54636792, 20862684, 4009832, 382358, 16576, 268, 1, 576037442, 1375636129, 1223392968, 533394516, 124266346, 15653598, 1023340, 31356, 366, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

T(n,k) is the number of Feynman's diagrams with k fermionic loops in the order n of the perturbative expansion in dimension zero for the self-energy function in a many-body theory of fermions with two-body interaction (see Molinari link).

LINKS

Gheorghe Coserea, Rows n=0..122, flattened

Luca G. Molinari, Hedin's equations and enumeration of Feynman's diagrams, arXiv:cond-mat/0401500 [cond-mat.str-el], 2005.

FORMULA

y(x;t) = Sum_{n>=0} P_n(t)*x^n satisfies y * (1-x*y)^2 = (1 + x*y + 2*x^2*deriv(y,x)) * (1 - x*y*(1-t)), with y(0;t) = 1, where P_n(t) = Sum_{k=0..n} T(n,k)*t^k, 0<=n, 0<=k<=n.

A000698(n+1)=T(n,0), A101986(n)=T(n,n-1), A000108(n)=P_n(-1), A286794(n)=P_n(1).

EXAMPLE

A(x;t) = 1 + (2 + t)*x + (10 + 9*t + t^2)*x^2 + (74 + 91*t + 23*t^2 + t^3)*x^3 + ...

Triangle starts:

n\k  [0]       [1]       [2]       [3]       [4]      [5]     [6]    [7]  [8]

[0]  1;

[1]  2,        1;

[2]  10,       9,        1;

[3]  74,       91,       23,       1;

[4]  706,      1063,     416,      46,       1;

[5]  8162,     14193,    7344,     1350,     80,      1;

[6]  110410,   213953,   134613,   34362,    3550,    127,    1;

[7]  1708394,  3602891,  2620379,  842751,   125195,  8085,   189,   1;

[8]  29752066, 67168527, 54636792, 20862684, 4009832, 382358, 16576, 268, 1;

[9] ...

MATHEMATICA

max = 10; y0[x_, t_] = 1; y1[x_, t_] = 0; For[n = 1, n <= max, n++, y1[x_, t_] = (1 + x*y0[x, t] + 2*x^2*D[y0[x, t], x])*(1 - x*y0[x, t]*(1 - t))/(1 - x*y0[x, t])^2 + O[x]^n // Normal; y0[x_, t_] = y1[x, t]];

row[n_] := CoefficientList[Coefficient[y0[x, t], x, n], t];

Table[row[n], {n, 0, max-1}] // Flatten (* Jean-Fran├žois Alcover, May 19 2017, adapted from PARI *)

PROG

(PARI)

A286781_ser(N, t='t) = {

  my(x='x+O('x^N), y0=1+O('x^N), y1=0, n=1);

  while(n++,

    y1 = (1 + x*y0 + 2*x^2*y0')*(1 - x*y0*(1-t))/(1-x*y0)^2;

    if (y1 == y0, break()); y0 = y1; );

  y0;

};

concat(apply(p->Vecrev(p), Vec(A286781_ser(10))))

\\ test: y = A286781_ser(50); y*(1-x*y)^2 == (1 + x*y + 2*x^2*deriv(y, 'x)) * (1 - x*y*(1-t))

CROSSREFS

For vertex and polarization functions see A286782 and A286783.  For GWA of the self-energy and polarization functions see A286784 and A286785.

Columns k=0-8 give: A000698(k=0), A286786(k=1), A286787(k=2), A286788(k=3), A286789(k=4), A286790(k=5), A286791(k=6), A286792(k=7), A286793(k=8).

Sequence in context: A217108 A127259 A152260 * A193727 A138098 A081098

Adjacent sequences:  A286778 A286779 A286780 * A286782 A286783 A286784

KEYWORD

nonn,tabl

AUTHOR

Gheorghe Coserea, May 14 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 20 22:20 EDT 2019. Contains 325189 sequences. (Running on oeis4.)