This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A286783 Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section. 12
 1, 3, 15, 5, 105, 77, 7, 945, 1044, 234, 9, 10395, 14784, 5390, 550, 11, 135135, 227877, 113126, 19760, 1105, 13, 2027025, 3862305, 2371845, 586425, 58275, 1995, 15, 34459425, 71983440, 51607716, 16271380, 2356234, 147560, 3332, 17, 654729075, 1469813400, 1185214452, 446964322, 84487110, 7888876, 333564, 5244, 19, 13749310575, 32718512925, 28937407212, 12516198870, 2884205268, 358182846, 23006928, 690480, 7875, 21 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Row n>0 contains n terms. T(n,k) is the number of Feynman's diagrams with k fermionic loops in the order n of the perturbative expansion in dimension zero for the polarization function in a many-body theory of fermions with two-body interaction (see Molinari link). LINKS Gheorghe Coserea, Rows n=0..123, flattened Luca G. Molinari, Hedin's equations and enumeration of Feynman's diagrams, arXiv:cond-mat/0401500 [cond-mat.str-el], 2005. FORMULA A(x;t) = Sum_{n>=0} P_n(t)*x^n = (1 + x*s + 2*x^2*deriv(s,x))/(1-x*s)^2, where s(x;t) = A286781(x;t) and P_n(t) = Sum_{k=0..n-1} T(n,k)*t^k for n>0. A001147(n+1)=T(n,0), A001700(n)=P_n(-1), A286794(n)=P_n(1). EXAMPLE A(x;t) = 1 + 3*x + (15 + 5*t)*x^2 + (105 + 77*t + 7*t^2)*x^3 + ... Triangle starts: n\k  [0]       [1]       [2]       [3]       [4]      [5]     [6]   [7] [0]  1; [1]  3; [2]  15,       5; [3]  105,      77,       7; [4]  945,      1044,     234,      9; [5]  10395,    14784,    5390,     550,      11; [6]  135135,   227877,   113126,   19760,    1105,    13; [7]  2027025,  3862305,  2371845,  586425,   58275,   1995,   15; [8]  34459425, 71983440, 51607716, 16271380, 2356234, 147560, 3332, 17; [9]  ... MATHEMATICA max = 11; y0[x_, t_] = 1; y1[x_, t_] = 0; For[n = 1, n <= max, n++, y1[x_, t_] = (1 + x*y0[x, t] + 2*x^2*D[y0[x, t], x])*(1 - x*y0[x, t]*(1 - t))/(1 - x*y0[x, t])^2 + O[x]^n // Normal; y0[x_, t_] = y1[x, t] // Simplify]; s = y0[x, t]; se = (1 + x*s + 2*x^2*D[s, x])/(1 - x*s)^2  + O[x]^max // Normal; row[n_] := row[n] = CoefficientList[Coefficient[se, x, n], t]; T[0, 0] = 1; T[n_, k_] := row[n][[k + 1]]; Table[T[n, k], {n, 0, max-1}, {k, 0, If[n == 0, 0, n-1]}] // Flatten (* Jean-François Alcover, May 19 2017, adapted from PARI *) PROG (PARI) A286781_ser(N, t='t) = {   my(x='x+O('x^N), y0=1+O('x^N), y1=0, n=1);   while(n++,     y1 = (1 + x*y0 + 2*x^2*y0')*(1 - x*y0*(1-t))/(1-x*y0)^2;     if (y1 == y0, break()); y0 = y1; );   y0; }; A286783_ser(N, t='t) = {   my(s=A286781_ser(N, t)); (1 + x*s + 2*x^2*deriv(s, 'x))/(1-x*s)^2; }; concat(apply(p->Vecrev(p), Vec(A286783_ser(10)))) CROSSREFS Sequence in context: A302782 A088558 A212203 * A012881 A248031 A066832 Adjacent sequences:  A286780 A286781 A286782 * A286784 A286785 A286786 KEYWORD nonn,tabf AUTHOR Gheorghe Coserea, May 14 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 18 21:25 EDT 2019. Contains 325144 sequences. (Running on oeis4.)