login
A285706
a(n) = number of iterations x -> A064216(x) needed to reach a nonprime number when starting from prime(n), a(1) = a(2) = 1.
4
1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 2, 3, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1
OFFSET
1,4
COMMENTS
Length (or size for the closed cycles: [2] and [3]) of the complete "slipping Cunningham chain of the second kind" starting with prime(n). That is, at the end of every step, the next prime q = 2p-1 "slips" by one step towards smaller primes as A064989(q).
After n = 1, 2 (primes 2 & 3) differs from A181715 for the first time at n=22, where a(22) = 2, while A181715(22) = 3, prime(22) = 79.
LINKS
FORMULA
a(n) = A285701(A000040(n)).
EXAMPLE
See examples in A285701.
MATHEMATICA
Table[If[n <= 2, 1, -1 + Length@ NestWhileList[Apply[Times, FactorInteger[2 # - 1] /. {p_, e_} /; p > 2 :> NextPrime[p, -1]^e] &, Prime@ n, PrimeQ@ # &]], {n, 120}] (* Michael De Vlieger, Apr 26 2017 *)
PROG
(PARI) A285706(n) = A285701(prime(n)); \\ The rest of code in A285701.
(Scheme) (define (A285706 n) (A285701 (A000040 n)))
CROSSREFS
Cf. A137288 (gives the positions of terms > 1 after its two initial terms).
Sequence in context: A342323 A374433 A135222 * A357181 A357137 A333381
KEYWORD
nonn
AUTHOR
Antti Karttunen, Apr 26 2017
STATUS
approved