This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A285706 a(n) = number of iterations x -> A064216(x) needed to reach a nonprime number when starting from prime(n), a(1) = a(2) = 1. 3

%I

%S 1,1,1,2,1,1,1,3,1,1,2,2,1,1,1,1,1,1,1,1,1,2,1,1,2,1,1,1,1,1,1,1,1,3,

%T 1,1,2,1,1,1,1,1,1,1,1,2,2,1,1,2,1,1,1,1,1,1,1,2,1,1,1,1,3,1,1,1,2,3,

%U 1,1,1,1,3,1,2,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,2,1,1,1,2,2,1,1,2,1,1,1,1,1,1

%N a(n) = number of iterations x -> A064216(x) needed to reach a nonprime number when starting from prime(n), a(1) = a(2) = 1.

%C Length (or size for the closed cycles: [2] and [3]) of the complete "slipping Cunningham chain of the second kind" starting with prime(n). That is, at the end of every step, the next prime q = 2p-1 "slips" by one step towards smaller primes as A064989(q).

%C After n = 1, 2 (primes 2 & 3) differs from A181715 for the first time at n=22, where a(22) = 2, while A181715(22) = 3, prime(22) = 79.

%H Antti Karttunen, <a href="/A285706/b285706.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = A285701(A000040(n)).

%e See examples in A285701.

%t Table[If[n <= 2, 1, -1 + Length@ NestWhileList[Apply[Times, FactorInteger[2 # - 1] /. {p_, e_} /; p > 2 :> NextPrime[p, -1]^e] &, Prime@ n, PrimeQ@ # &]], {n, 120}] (* _Michael De Vlieger_, Apr 26 2017 *)

%o (PARI) A285706(n) = A285701(prime(n)); \\ The rest of code in A285701.

%o (Scheme) (define (A285706 n) (A285701 (A000040 n)))

%Y Cf. A000040, A064216, A064989, A181715, A246373, A285701.

%Y Cf. A137288 (gives the positions of terms > 1 after its two initial terms).

%K nonn

%O 1,4

%A _Antti Karttunen_, Apr 26 2017

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 20 19:23 EDT 2019. Contains 321349 sequences. (Running on oeis4.)