|
|
A284130
|
|
Hosoya triangle of Jacobsthal type, read by rows.
|
|
1
|
|
|
1, 1, 1, 3, 1, 3, 5, 3, 3, 5, 11, 5, 9, 5, 11, 21, 11, 15, 15, 11, 21, 43, 21, 33, 25, 33, 21, 43, 85, 43, 63, 55, 55, 63, 43, 85, 171, 85, 129, 105, 121, 105, 129, 85, 171, 341, 171, 255, 215, 231, 231, 215, 255, 171, 341, 683, 341, 513, 425, 473, 441, 473, 425, 513, 341, 683
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,4
|
|
LINKS
|
Michael De Vlieger, Table of n, a(n) for n = 1..11026, rows 1 <= n <= 150.
Matthew Blair, Rigoberto Flórez, Antara Mukherjee, Matrices in the Hosoya triangle, arXiv:1808.05278 [math.CO], 2018.
R. Florez, R. Higuita and L. Junes, GCD property of the generalized star of David in the generalized Hosoya triangle, J. Integer Seq., 17 (2014), Article 14.3.6, 17 pp.
R. Florez and L. Junes, GCD properties in Hosoya's triangle, Fibonacci Quart. 50 (2012), 163-174.
H. Hosoya, Fibonacci Triangle, The Fibonacci Quarterly, 14;2, 1976, 173-178.
Wikipedia, Hosoya triangle
|
|
FORMULA
|
T(n,k) = A001045(k)*A001045(n - k + 1), 0 < n, 0 < k <= n.
|
|
EXAMPLE
|
Triangle begins:
1;
1, 1;
3, 1, 3;
5, 3, 3, 5;
11, 5, 9, 5, 11;
21, 11, 15, 15, 11, 21;
...
|
|
MATHEMATICA
|
With[{s = Array[(2^# - (-1)^#)/3 &, 150, 0]}, Table[s[[k]] s[[n - k + 1]], {n, Length@ s}, {k, 2, n - 1}]] // Flatten (* Michael De Vlieger, Nov 14 2018, after Joseph Biberstine at A001045 *)
|
|
PROG
|
(PARI) a(n) = if(n<2, n, a(n - 1) + 2*a(n - 2));
for(n=0, 15, for(k=1, n, print1(a(k) * a(n - k + 1), ", "); ); print(); ); \\ Indranil Ghosh, Mar 29 2017
|
|
CROSSREFS
|
Cf. A001045.
Sequence in context: A126637 A110091 A263051 * A005474 A012264 A063198
Adjacent sequences: A284127 A284128 A284129 * A284131 A284132 A284133
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
Rigoberto Florez, Mar 20 2017
|
|
STATUS
|
approved
|
|
|
|