login
A284129
Hosoya triangle Jacobsthal Lucas type.
1
1, 5, 5, 7, 25, 7, 17, 35, 35, 17, 31, 85, 49, 85, 31, 65, 155, 119, 119, 155, 65, 127, 325, 217, 289, 217, 325, 127, 257, 635, 455, 527, 527, 455, 635, 257, 511, 1285, 889, 1105, 961, 1105, 889, 1285, 511, 1025, 2555, 1799, 2159, 2015, 2015, 2159, 1799, 2555, 1025, 2047, 5125
OFFSET
1,2
LINKS
Indranil Ghosh, Rows 1..100, flattened
Matthew Blair, Rigoberto Flórez, Antara Mukherjee, Matrices in the Hosoya triangle, arXiv:1808.05278 [math.CO], 2018.
H. Hosoya, Fibonacci Triangle, The Fibonacci Quarterly, 14;2, 1976, pages 173-178.
R. Florez, R. Higuita and L. Junes, GCD property of the generalized star of David in the generalized Hosoya triangle, J. Integer Seq., 17 (2014), Article 14.3.6, 17 pp.
R. Florez and L. Junes, GCD properties in Hosoya's triangle, Fibonacci Quart. 50 (2012), pages 163-174.
Wikipedia, Hosoya's triangle.
FORMULA
T(n,k) = A014551(k)*A014551(n - k + 1), where n > 0 and 0 < k <= n.
EXAMPLE
Triangle begins:
1,
5, 5,
7, 25, 7,
17, 35, 35, 17,
31, 85, 49, 85, 31,
65, 155, 119, 119, 155, 65,
127, 325, 217, 289, 217, 325, 127,
257, 635, 455, 527, 527, 455, 635, 257,
511, 1285, 889, 1105, 961, 1105, 889, 1285, 511,
...
MATHEMATICA
a[n_]:= 2^n + (-1)^n; Table[a[k] a[n - k + 1], {n, 10}, {k, n}] // Flatten (* Indranil Ghosh, Mar 30 2017 *)
PROG
(PARI) a(n) = 2^n + (-1)^n;
for(n=1, 10, for(k=1, n, print1(a(k)*a(n - k + 1), ", "); ); print(); ); \\ Indranil Ghosh, Mar 30 2017
(Python)
def a(n): return 2**n + (-1)**n
for n in range(1, 11):
print([a(k) * a(n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 30 2017
CROSSREFS
Cf. A014551.
Sequence in context: A109257 A088048 A006146 * A077956 A077977 A019204
KEYWORD
nonn,tabl
AUTHOR
Rigoberto Florez, Mar 20 2017
STATUS
approved