The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A284127 Hosoya triangle of Pell type, read by rows. 1
 1, 2, 2, 5, 4, 5, 12, 10, 10, 12, 29, 24, 25, 24, 29, 70, 58, 60, 60, 58, 70, 169, 140, 145, 144, 145, 140, 169, 408, 338, 350, 348, 348, 350, 338, 408, 985, 816, 845, 840, 841, 840, 845, 816, 985, 2378, 1970, 2040, 2028, 2030, 2030, 2028, 2040, 1970, 2378, 5741, 4756, 4925, 4896, 4901, 4900, 4901, 4896, 4925, 4756, 5741 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Michael De Vlieger, Table of n, a(n) for n = 1..11325, rows 1 <= n <= 150. Matthew Blair, Rigoberto Flórez, Antara Mukherjee, Matrices in the Hosoya triangle, arXiv:1808.05278 [math.CO], 2018. R. Florez, R. Higuita and L. Junes, GCD property of the generalized star of David in the generalized Hosoya triangle, J. Integer Seq., 17 (2014), Article 14.3.6, 17 pp. R. Florez and L. Junes, GCD properties in Hosoya's triangle, Fibonacci Quart. 50 (2012), 163-174. H. Hosoya, Fibonacci Triangle, The Fibonacci Quarterly, 14;2, 1976, 173-178. Wikipedia, Hosoya triangle FORMULA T(n,k) = a(k)*a(n - k + 1), a(n) = 2*a (n - 1) + a (n - 2), with a(0) = 0, a(1) = 1; for 0 < n, 0 < k <= n. EXAMPLE Triangle begins: 1; 2, 2; 5, 4, 5; 12, 10, 10, 12; 29, 24, 25, 24, 29; 70, 58, 60, 60, 58, 70; ... MATHEMATICA a[n_]:=a[n]=If[n<2, n, 2a[n - 1] + a[n - 2]]; Table[a[k] a[n - k + 1], {n, 20}, {k, n}] // Flatten (* Indranil Ghosh, Apr 08 2017, edited by Michael De Vlieger, Nov 14 2018 *) PROG (PARI) a(n) = if(n<2, n, 2*a(n - 1) + a(n - 2)); for(n=1, 20, for(k=1, n, print1(a(k)*a(n - k + 1), ", "); ); print(); ) \\ Indranil Ghosh, Apr 08 2017 (Python) def a(n): return n if n<2 else 2*a(n - 1) + a(n - 2) for n in range(1, 21): print [a(k)*a(n - k + 1) for k in range(1, n + 1)] # Indranil Ghosh, Apr 08 2017 (C) #include int a(int n){ if(n<2){ return n; } return 2*a(n - 1) + a(n - 2); } int main() { int n, k; for (n=1; n<=20; n++){ for(k=1; k<=n; k++){ printf("%d, ", a(k)*a(n - k + 1)); } printf("\n"); } return 0; } // Indranil Ghosh, Apr 08 2017 (Go) package main import "fmt" func a(n int)int{ if n<2{ return n } return 2*a(n - 1) + a(n - 2)} func main() { for n:=1; n<=20; n++{ for k:=1; k<=n; k++{ fmt.Printf("%d, ", a(k)*a(n - k + 1))} fmt.Println() } } // Indranil Ghosh, Apr 08 2017 CROSSREFS Sequence in context: A337662 A286099 A098366 * A261114 A284827 A241306 Adjacent sequences: A284124 A284125 A284126 * A284128 A284129 A284130 KEYWORD nonn,tabl AUTHOR Rigoberto Florez, Mar 20 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 1 07:16 EST 2023. Contains 359981 sequences. (Running on oeis4.)