login
A283924
Denominators of poly-Bernoulli numbers B_n^(k) with k=6.
2
1, 64, 46656, 497664, 11664000000, 518400000, 274451587200000, 41821194240000, 63515938752000000, 403275801600000, 3750745332381062400000, 8659729483130880000, 115208108444831203593792000000, 60895775359471852800000, 189903475458512972956800000
OFFSET
0,2
LINKS
EXAMPLE
B_0^(6) = 1, B_1^(6) = 1/64, B_2^(6) = -601/46656, B_3^(6) = 4409/497664, ...
MATHEMATICA
B[n_]:= Sum[((-1)^(m + n))*m!*StirlingS2[n, m] * (m + 1)^(-6), {m, 0, n}];
Table[Denominator[B[n]], {n, 0, 15}] (* Indranil Ghosh, Mar 18 2017 *)
PROG
(PARI) B(n) = sum(m=0, n, ((-1)^(m + n)) * m! * stirling(n, m, 2) * (m + 1)^(-6));
for(n=0, 15, print1(denominator(B(n)), ", ")) \\ Indranil Ghosh, Mar 18 2017
CROSSREFS
Cf. A283923.
Sequence in context: A159400 A221615 A141092 * A016830 A249076 A334605
KEYWORD
nonn,frac
AUTHOR
Seiichi Manyama, Mar 18 2017
STATUS
approved