login
A283922
Denominators of poly-Bernoulli numbers B_n^(k) with k=5.
2
1, 32, 7776, 41472, 194400000, 25920000, 653456160000, 49787136000, 25204737600000, 160030080000, 16913534146740000, 312400053504000, 319702820637227227200000, 788601079506240000, 1053965342760089760000, 187184432058624000
OFFSET
0,2
LINKS
EXAMPLE
B_0^(5) = 1, B_1^(5) = 1/32, B_2^(5) = -179/7776, B_3^(5) = 515/41472, ...
MATHEMATICA
B[n_]:= Sum[((-1)^(m + n))*m!*StirlingS2[n, m] * (m + 1)^(-5), {m, 0, n}]; Table[Denominator[B[n]], {n, 0, 15}] (* Indranil Ghosh, Mar 18 2017 *)
PROG
(PARI) B(n) = sum(m=0, n, ((-1)^(m + n)) * m! * stirling(n, m, 2) * (m + 1)^(-5));
for(n=0, 15, print1(denominator(B(n)), ", ")) \\ Indranil Ghosh, Mar 18 2017
CROSSREFS
Cf. A283921.
Sequence in context: A028461 A240446 A221608 * A224100 A224107 A016829
KEYWORD
nonn,frac
AUTHOR
Seiichi Manyama, Mar 18 2017
STATUS
approved