OFFSET
0,2
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
FORMULA
a(n) = A002378(n)^6.
a(n) = 64*A059978(n) for n>0.
G.f.: 64*x*(x^10 + 716*x^9 + 37257*x^8 + 450048*x^7 + 1822014*x^6 + 2864328*x^5 + 1822014*x^4 + 450048*x^3 + 37257*x^2 + 716*x + 1)/(1 - x)^13. [corrected by Georg Fischer, May 10 2019]
Sum_{n>=1} 1/a(n) = -462 + 42*Pi^2 + 7*Pi^4/15 + 2*Pi^6/945. - Vaclav Kotesovec, Sep 25 2019
MAPLE
[ seq(n^6*(n+1)^6, n = 0..100) ];
MATHEMATICA
Table[(n (n + 1))^6, {n, 0, 70}] (* or *)
CoefficientList[Series[64*x*(x^10 + 716 x^9 + 37257 x^8 + 450048 x^7 + 1822014 x^6 + 2864328 x^5 + 1822014 x^4 + 450048 x^3 + 37257 x^2 + 716 x + 1)/(1 - x)^13, {x, 0, 30}], x]
PROG
(Magma) [(n*(n+1))^6: n in [0..30]];
(PARI) a(n)=(n*(n+1))^6 \\ Charles R Greathouse IV, Oct 21 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jiwoo Lee, Oct 20 2014
EXTENSIONS
Incorrect term corrected by Colin Barker, Oct 21 2014
Terms a(21) and beyond corrected by Andrew Howroyd, Feb 22 2018
STATUS
approved