login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A249076 a(n) = (n*(n+1))^6. 1
0, 64, 46656, 2985984, 64000000, 729000000, 5489031744, 30840979456, 139314069504, 531441000000, 1771561000000, 5289852801024, 14412774445056, 36343632130624, 85766121000000, 191102976000000, 404961208827904, 820972403643456, 1600135042849344, 3010936384000000, 5489031744000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Andrew Howroyd, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).

FORMULA

a(n) = A002378(n)^6.

a(n) = 64*A059978(n) for n>0.

G.f.: 64*x*(x^10 + 716*x^9 + 37257*x^8 + 450048*x^7 + 1822014*x^6 + 2864328*x^5 + 1822014*x^4 + 450048*x^3 + 37257*x^2 + 716*x + 1)/(1 - x)^13. [corrected by Georg Fischer, May 10 2019]

MAPLE

[ seq(n^6*(n+1)^6, n = 0..100) ];

MATHEMATICA

Table[(n (n + 1))^6, {n, 0, 70}] (* or *)

CoefficientList[Series[64*x*(x^10 + 716 x^9 + 37257 x^8 + 450048 x^7 + 1822014 x^6 + 2864328 x^5 + 1822014 x^4 + 450048 x^3 + 37257 x^2 + 716 x + 1)/(1 - x)^13, {x, 0, 30}], x]

PROG

(MAGMA) [(n*(n+1))^6: n in [0..30]];

(PARI) a(n)=(n*(n+1))^6 \\ Charles R Greathouse IV, Oct 21 2014

CROSSREFS

Cf. A059978; A002378: n*(n+1); A035282: n^2 *(n+1)^2; A060459: n^3 *(n+1)^3; A248619: n^4 *(n+1)^4;

Sequence in context: A141092 A283924 A016830 * A103346 A123394 A069445

Adjacent sequences:  A249073 A249074 A249075 * A249077 A249078 A249079

KEYWORD

nonn,easy

AUTHOR

Jiwoo Lee, Oct 20 2014

EXTENSIONS

Incorrect term corrected by Colin Barker, Oct 21 2014

Terms a(21) and beyond corrected by Andrew Howroyd, Feb 22 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 22 14:36 EDT 2019. Contains 325222 sequences. (Running on oeis4.)