This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A281620 Triangle read by rows: PoincarĂ© polynomials of orbifold of Fermat hypersurfaces. 0
 1, 7, 1, 67, 13, 1, 821, 181, 21, 1, 12281, 2906, 406, 31, 1, 217015, 53719, 8359, 799, 43, 1, 4424071, 1129899, 188707, 20637, 1429, 57, 1, 102207817, 26710345, 4690249, 561481, 45385, 2377, 73, 1, 2639010709, 701908264, 127951984, 16349374, 1469026, 91216, 3736, 91, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 2,2 LINKS So Okada, Homological mirror symmetry of Fermat polynomials, arxiv:0910.2014 [math.AG], 2009-2010. FORMULA The formula given by Okada needs to be corrected as follows: Sum_{j=0..n-1} Sum_{i=0..n-1-j} n^j * binomial(n,j) * (-1)^(i+n+j) * binomial(n-2-j+1,i+1) * q^i. From Peter Luschny, Jan 26 2017: (Start) T(n,k) = [x^k] Sum_{j=0..n-1} t(j, n) for n>=2 and 0<=k<=n-2 with t(j,n) = (-1)^(j+n)*binomial(n,j)*(1-(1-x)^(n-1-j))*x^(-1)*n^j. T(n,k) = [x^k] ((-n-x+1)^n+(x-1)*(1-n)^n-(-n)^n*x)*(-1)^n/((x-1)*x). (End) EXAMPLE The first few polynomials are 1; q + 7; q^2 + 13*q + 67; ... Triangle begins:         1;         7,       1;        67,      13,      1;       821,     181,     21,     1;     12281,    2906,    406,    31,    1;    217015,   53719,   8359,   799,   43,  1;   4424071, 1129899, 188707, 20637, 1429, 57, 1;   ... MAPLE T:= n-> (p-> seq(coeff(p, q, i), i=0..n-2))(add(add(n^j*          binomial(n, j)*(-1)^(i+n+j)*binomial(n-2-j+1, i+1)*          q^i, i=0..n-1-j), j=0..n-1)): seq(T(n), n=2..10);  # Alois P. Heinz, Jan 25 2017 # Alternatively: t := n -> factor(((-n-x+1)^n+(x-1)*(1-n)^n-(-n)^n*x)*(-1)^n/((x-1)*x)): seq(seq(coeff(t(n), x, k), k=0..n-2), n=2..10); # Peter Luschny, Jan 26 2017 MATHEMATICA T[n_] := ((-n-x+1)^n+(x-1)(1-n)^n-(-n)^n x) (-1)^n/((x-1) x); Table[CoefficientList[T[n], x], {n, 2, 10}] // Flatten (* Peter Luschny, Jan 26 2017 *) PROG (Sage) def fermat(n):     q = polygen(ZZ, 'q')     return sum(n ** j * binomial(n, j) * (-1) ** (i + n + j) *                binomial(n - 2 - j + 1, i + 1) * q ** i                for j in range(n - 1)                for i in range(n - 1 - j)) # Alternatively: def A281620_row(n):     p = factor(((-n-x+1)^n+(x-1)*(1-n)^n-(-n)^n*x)*(-1)^n/((x-1)*x))     return p.list() for n in (2..10): print A281620_row(n) # Peter Luschny, Jan 26 2017 CROSSREFS Row sums give A007778(n-1), alternating row sums are A281596. Sequence in context: A051339 A134141 A237111 * A321187 A221367 A110788 Adjacent sequences:  A281617 A281618 A281619 * A281621 A281622 A281623 KEYWORD nonn,tabl AUTHOR F. Chapoton, Jan 25 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 21 04:18 EST 2019. Contains 320371 sequences. (Running on oeis4.)