login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321187
Triangle read by rows, T(n, k) is the determinant of the matrix [s(n,k), s(n,k+1); s(n+1,k), s(n+1,k+1)] where s is the triangle A110440 of little Schroeder numbers.
0
1, 7, 1, 71, 23, 1, 913, 456, 48, 1, 13777, 9060, 1560, 82, 1, 233119, 185805, 44262, 3950, 125, 1, 4298911, 3951927, 1188747, 151585, 8355, 177, 1, 84769393, 87024056, 31242008, 5172370, 416730, 15666, 238, 1, 1763748273, 1977448272, 815985408, 165150744, 17626140, 985068, 26936, 308, 1
OFFSET
0,2
LINKS
Fangfang Cai, Qing-Hu Hou, Yidong Sun, Arthur L.B. Yang, Combinatorial identities related to 2×2 submatrices of recursive matrices, arXiv:1808.05736 [math.CO], 2018. See Table 1.3 p. 3.
EXAMPLE
Triangle begins:
1;
7, 1;
71, 23, 1;
913, 456, 48, 1;
13777, 9060, 1560, 82, 1;
233119, 185805, 44262, 3950, 125, 1;
...
MATHEMATICA
s[n_, k_] := Sum[i (-1)^(k - i + 1) Binomial[k + 1, i] Sum[(-1)^j 2^(n + 1 - j) (2n + i - j + 1)!/((n + i - j + 1)! j! (n - j + 1)!), {j, 0, n+1}], {i, 0, k + 1}];
T[n_, k_] := Det[{{s[n, k], s[n, k+1]}, {s[n+1, k], s[n+1, k+1]}}];
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 02 2019, translated from PARI *)
PROG
(PARI) s(n, k) = sum(i = 0, k+1, (i*(-1)^(k - i + 1)*binomial(k + 1, i)*sum(j=0, n+1, (-1)^j*2^(n + 1 - j)*(2*n + i - j + 1)!/((n + i - j + 1)!*j!*(n - j + 1)!)))); \\ A110440
T(n, k) = matdet([s(n, k), s(n, k+1); s(n+1, k), s(n+1, k+1)]);
CROSSREFS
Cf. A110440.
Sequence in context: A350202 A237111 A281620 * A221367 A110788 A100254
KEYWORD
nonn,tabl
AUTHOR
Michel Marcus, Oct 31 2018
STATUS
approved