login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A237111 Triangle read by rows: numerators of coefficients of the Hirzebruch L-polynomials L_n expressing the signature of a 4n-dimensional manifold in terms of its Pontrjagin numbers (as in Hirzebruch Signature Theorem). 1
1, 7, -1, 62, -13, 2, 381, -71, -19, 22, -3, 5110, -919, -336, 237, 127, -83, 10, 2828954, -503904, -159287, 122523, -40247, 86901, -33863, 8718, -27635, 12842, -1382, 3440220, -611266, -185150, 146256, -62274, 88137, -37290, 22027, 16696, -39341, 10692, -7978, 11880, -4322, 420 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The monomials of each polynomial L_n have been written in descending lexicographic order (where the exponent of p_1 is considered less significant than that of p_2, etc.) and over a common denominator. These denominators follow A171080.

REFERENCES

F. Hirzebruch, Topological methods in algebraic geometry. Third enlarged edition. Die Grundlehren der Mathematischen Wissenschaften, Band 131 Springer-Verlag New York, Inc., New York 1966, p. 12.

F. Hirzebruch, The signature theorem: reminiscences and recreation. Prospects in mathematics (Proc. Sympos., Princeton Univ., Princeton, N.J., 1970), pp. 3-31. Ann. of Math. Studies, No. 70, Princeton Univ. Press, Princeton, N.J. 1971.

LINKS

Carl McTague, Table of n, a(n) for n = 1..372

Carl McTague, Computing Hirzebruch L-Polynomials.

EXAMPLE

L_1 = p_1/3.

L_2 = (7 p_2-p_1^2)/45.

L_3 = (62 p_3-13 p_2 p_1+2 p_1^3)/945.

L_4 = (381 p_4-71 p_3 p_1-19 p_2^2+22 p_2 p_1^2-3 p_1^4)/14175.

L_5 = (5110 p_5-919 p_4 p_1-336 p_3 p_2+237 p_3 p_1^2+127 p_2^2 p_1-83 p_2 p_1^3+10 p_1^5)/467775.

The denominators 3,45,945,14175,467775 follow A171080.

The sequence of numerators thus begins 1,7,-1,62,-13,2,381,-71,-19,22,-3,5110,-919,-336,237,127,-83,10,...

MATHEMATICA

K[Q_, n_Integer] := Module[{z, x},

   SymmetricReduction[

      SeriesCoefficient[

       Product[ComposeSeries[Series[Q[z], {z, 0, n}],

         Series[Subscript[x, i]z, {z, 0, n}]], {i, 1, n}], n],

      Table[Subscript[x, i], {i, 1, n}],

      Table[Subscript[p, i], {i, 1, n}]][[1]] // FactorTerms];

Table[K[Sqrt[#]/Tanh[Sqrt[#]]&, n], {n, 1, 5}]

CROSSREFS

Sequence in context: A144450 A051339 A134141 * A221367 A110788 A100254

Adjacent sequences:  A237108 A237109 A237110 * A237112 A237113 A237114

KEYWORD

sign,frac,tabl

AUTHOR

Carl McTague, Feb 03 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 7 05:39 EST 2016. Contains 278841 sequences.