login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A279955 Expansion of chi(-x^4)^4 * f(-x^4)^2 * f(-x)^2 in powers of x where chi(), f() are Ramanujan theta functions. 5
1, -2, -1, 2, -5, 14, 4, -12, 5, -40, 0, 26, 11, 68, -15, -30, -18, -106, 3, 50, -10, 182, 29, -104, 10, -270, 11, 130, 37, 360, -51, -164, -16, -506, -30, 266, -65, 686, 62, -320, 53, -898, 22, 414, 50, 1206, -61, -612, -52, -1560, -4, 696, -81, 1958, 120 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Amanda Clemm, Modular Forms and Weierstrass Mock Modular Forms, Mathematics, volume 4, issue 1, (2016)

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of q * eta(q^4)^2 * eta(q^16)^6 / eta(q^32)^4 in powers of q^4.

Euler transform of period 8 sequence [ -2, -2, -2, -8, -2, -2, -2, -4, ...].

a(n) = (-1)^n * A280339(n).

a(3*n + 1) / a(1) == A002171(n) (mod 3). a(3^3*n + 7) / a(7) == A002171(n) (mod 3^2).

EXAMPLE

G.f. = 1 - 2*x - x^2 + 2*x^3 - 5*x^4 + 14*x^5 + 4*x^6 - 12*x^7 + 5*x^8 + ...

G.f. = q^-1 - 2*q^3 - q^7 + 2*q^11 - 5*q^15 + 14*q^19 + 4*q^23 - 12*q^27 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ QPochhammer[ x]^2 QPochhammer[ x^4]^2 QPochhammer[ x^4, x^8]^4, {x, 0, n}];

PROG

(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A)^6 / eta(x^8 + A)^4, n))};

CROSSREFS

Cf. A002171, A280339.

Sequence in context: A117715 A160457 A107087 * A280339 A115141 A031148

Adjacent sequences:  A279952 A279953 A279954 * A279956 A279957 A279958

KEYWORD

sign

AUTHOR

Michael Somos, Dec 23 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 17 11:14 EDT 2019. Contains 326057 sequences. (Running on oeis4.)