login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A280339 Expansion of phi(x)^2 * chi(x^2)^4 * f(-x)^2 in powers of x where phi(), chi(), f() are Ramanujan theta functions. 3
1, 2, -1, -2, -5, -14, 4, 12, 5, 40, 0, -26, 11, -68, -15, 30, -18, 106, 3, -50, -10, -182, 29, 104, 10, 270, 11, -130, 37, -360, -51, 164, -16, 506, -30, -266, -65, -686, 62, 320, 53, 898, 22, -414, 50, -1206, -61, 612, -52, 1560, -4, -696, -81, -1958, 120 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..5000

Amanda Clemm, Modular Forms and Weierstrass Mock Modular Forms, Mathematics, volume 4, issue 1, (2016)

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of phi(-x^4)^2 * chi(-x^4)^2 * f(x)^2 in powers of x where phi(), chi(), f() are Ramanujan theta functions.

Expansion of q^(1/4) * eta(q^2)^6 * eta(q^4)^4 / (eta(q)^2 * eta(q^8)^4) in powers of q.

Euler transform of period 8 sequence [2, -4, 2, -8, 2, -4, 2, -4, ...].

a(n) = (-1)^n * A279955(n).

a(3*n + 1) / a(1) == A138515(n) (mod 3). a(3^3*n + 7) / a(7) == A138515(n) (mod 3^2).

EXAMPLE

G.f. = 1 + 2*x - x^2 - 2*x^3 - 5*x^4 - 14*x^5 + 4*x^6 + 12*x^7 + 5*x^8 + ...

G.f. = q^-1 + 2*q^3 - q^7 - 2*q^11 - 5*q^15 - 14*q^19 + 4*q^23 + 12*q^27 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x]^2 QPochhammer[ x]^2 QPochhammer[ -x^2, x^4]^4, {x, 0, n}];

PROG

(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^6 * eta(x^4 + A)^4 / (eta(x + A)^2 * eta(x^8 + A)^4), n))};

CROSSREFS

Cf. A138515, A279955.

Sequence in context: A160457 A107087 A279955 * A115141 A031148 A032238

Adjacent sequences:  A280336 A280337 A280338 * A280340 A280341 A280342

KEYWORD

sign

AUTHOR

Michael Somos, Dec 31 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 27 12:30 EDT 2020. Contains 337380 sequences. (Running on oeis4.)