login
A278074
Triangle read by rows, coefficients of the polynomials P(m, n) = Sum_{k=1..n} binomial(m*n, m*k)* P(m, n-k)*z with P(m, 0) = 1 and m = 4.
12
1, 0, 1, 0, 1, 70, 0, 1, 990, 34650, 0, 1, 16510, 2702700, 63063000, 0, 1, 261630, 213519150, 17459442000, 305540235000, 0, 1, 4196350, 17651304000, 4350310965000, 231905038365000, 3246670537110000
OFFSET
0,6
LINKS
FORMULA
E.g.f.: 1/(1-t*((cosh(x)+cos(x))/2-1)), nonzero terms.
EXAMPLE
Triangle starts:
[1]
[0, 1]
[0, 1, 70]
[0, 1, 990, 34650]
[0, 1, 16510, 2702700, 63063000]
[0, 1, 261630, 213519150, 17459442000, 305540235000]
MAPLE
P := proc(m, n) option remember; if n = 0 then 1 else
add(binomial(m*n, m*k)* P(m, n-k)*x, k=1..n) fi end:
for n from 0 to 6 do PolynomialTools:-CoefficientList(P(4, n), x) od;
# Alternatively:
A278074_row := proc(n) 1/(1-t*((cosh(x)+cos(x))/2-1)); expand(series(%, x, 4*n+1));
(4*n)!*coeff(%, x, 4*n); PolynomialTools:-CoefficientList(%, t) end:
for n from 0 to 5 do A278074_row(n) od;
MATHEMATICA
With[{m = 4}, Table[Expand[j!*SeriesCoefficient[1/(1 - t*(MittagLefflerE[m, x^m] - 1)), {x, 0, j}]], {j, 0, 24, m}]];
Function[arg, CoefficientList[arg, t]] /@ % // Flatten
PROG
(Sage) # uses [P from A278073]
def A278074_row(n): return list(P(4, n))
for n in (0..6): print(A278074_row(n)) # Peter Luschny, Mar 24 2020
CROSSREFS
Cf. A014608 (diagonal), A243665 (row sums), A211212 (alternating row sums), A281480 (central coefficients).
Cf. A097805 (m=0), A131689 (m=1), A241171 (m=2), A278073 (m=3).
Cf. A327024 (refinement).
Sequence in context: A116238 A136114 A365913 * A075405 A365914 A177808
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Jan 22 2017
STATUS
approved