OFFSET
0,4
LINKS
H. L. Krall and O. Fink, A New Class of Orthogonal Polynomials: The Bessel Polynomials, Trans. Amer. Math. Soc. 65, 100-115, 1949.
Herbert E. Salzer, Orthogonal Polynomials Arising in the Numerical Evaluation of Inverse Laplace Transforms, Mathematical Tables and Other Aids to Computation, Vol. 9, No. 52 (Oct., 1955), pp. 164-177, (see p.174 and footnote 7).
FORMULA
The P(n,x) are orthogonal polynomials. They satisfy the recurrence
P(n,x) = ((((4*n-2)*(2*n-3)*x+2)*P(n-1,x)+(2*n-1)*P(n-2,x))/(2*n-3)) for n>=2.
In terms of generalized Laguerre polynomials (see the Krall and Fink link):
P(n,x) = n!*(-x)^n*LaguerreL(n,-2*n,-1/x).
EXAMPLE
Triangle starts:
. 1,
. 1, -1,
. 6, -4, 1,
. 60, -36, 9, -1,
. 840, -480, 120, -16, 1,
. 15120, -8400, 2100, -300, 25, -1,
. 332640, -181440, 45360, -6720, 630, -36, 1,
...
MAPLE
p := n -> (-1)^n*hypergeom([n, -n], [], x):
ListTools:-Flatten([seq(PolynomialTools:-CoefficientList(simplify(p(n)), x, termorder=reverse), n=0..8)]);
# Alternatively the polynomials by recurrence:
P := proc(n, x) if n=0 then return 1 fi; if n=1 then return x-1 fi;
((((4*n-2)*(2*n-3)*x+2)*P(n-1, x)+(2*n-1)*P(n-2, x))/(2*n-3));
sort(expand(%)) end: for n from 0 to 6 do lprint(P(n, x)) od;
# Or by generalized Laguerre polynomials:
P := (n, x) -> n!*(-x)^n*LaguerreL(n, -2*n, -1/x):
for n from 0 to 6 do simplify(P(n, x)) od;
MATHEMATICA
row[n_] := CoefficientList[(-1)^n HypergeometricPFQ[{n, -n}, {}, x], x] // Reverse;
Table[row[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Jul 12 2019 *)
(* T(n, k)= *) t={}; For[n=8, n>-1, n--, For[j=n+1, j>0, j--, PrependTo[t, (-1)^(j-n+1-Mod[n, 2])*Product[(2*n-k)*k/(n-k+1), {k, j, n}]]]]; t (* Detlef Meya, Aug 02 2023 *)
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Nov 10 2016
STATUS
approved