login
A365913
Expansion of e.g.f. 1 / ( 1 - Sum_{k>=0} x^(3*k+4) / (3*k+4)! ).
1
1, 0, 0, 0, 1, 0, 0, 1, 70, 0, 1, 660, 34650, 1, 5434, 1351350, 63063001, 43656, 40694940, 6983776801, 305540584486, 1140183540, 550554404401, 77301682251156, 3246701716667574, 38582808660001, 13159690691494570, 1627974214800566490, 66478153367438069401
OFFSET
0,9
FORMULA
a(0) = 1; a(n) = Sum_{k=0..floor((n-4)/3)} binomial(n,3*k+4) * a(n-3*k-4).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=0, N\3, x^(3*k+4)/(3*k+4)!))))
CROSSREFS
Cf. A365894.
Sequence in context: A116099 A116238 A136114 * A278074 A075405 A365914
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Sep 22 2023
STATUS
approved