login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277228
Convolution of the even-indexed triangular numbers (A014105) and the squares (A000290).
2
0, 0, 3, 22, 88, 258, 623, 1316, 2520, 4476, 7491, 11946, 18304, 27118, 39039, 54824, 75344, 101592, 134691, 175902, 226632, 288442, 363055, 452364, 558440, 683540, 830115, 1000818, 1198512, 1426278, 1687423, 1985488, 2324256, 2707760, 3140291, 3626406
OFFSET
0,3
COMMENTS
This sequence was originally proposed in a comment on A071245 by J. M. Bergot as giving the first differences. Therefore, a(n) gives the partial sums of A071245.
FORMULA
O.g.f.: x^2*(1 + x)*(3 + x)/(1 - x)^6 = (x*(3 + x)/(1 - x)^3)*(x*(1 + x)/(1 - x)^3).
a(n) = Sum_{k=0..n} A014105(n-k)*A000290(k).
a(n) = binomial(n+1, 3)*(4*n^2 + 5*n + 4)/10 = (n - 1)*n*(n + 1)*(4*n^2 + 5*n + 4)/60.
a(n) = Sum_{k=0..n} A071245(k).
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5. - Colin Barker, Oct 21 2016
MATHEMATICA
Table[(n - 1) n (n + 1) (4 n^2 + 5 n + 4)/60, {n, 0, 40}] (* Bruno Berselli, Oct 21 2016 *)
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 0, 3, 22, 88, 258}, 40] (* Harvey P. Dale, Jun 04 2023 *)
PROG
(PARI) concat(vector(2), Vec(x^2*(1+x)*(3+x)/(1-x)^6 + O(x^50))) \\ Colin Barker, Oct 21 2016
(Magma) [Binomial(n+1, 3)*(4*n^2 +5*n +4)/10: n in [0..40]]; // G. C. Greubel, Oct 22 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Oct 20 2016
STATUS
approved