OFFSET
0,3
COMMENTS
This sequence was originally proposed in a comment on A071245 by J. M. Bergot as giving the first differences. Therefore, a(n) gives the partial sums of A071245.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
FORMULA
O.g.f.: x^2*(1 + x)*(3 + x)/(1 - x)^6 = (x*(3 + x)/(1 - x)^3)*(x*(1 + x)/(1 - x)^3).
a(n) = binomial(n+1, 3)*(4*n^2 + 5*n + 4)/10 = (n - 1)*n*(n + 1)*(4*n^2 + 5*n + 4)/60.
a(n) = Sum_{k=0..n} A071245(k).
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5. - Colin Barker, Oct 21 2016
MATHEMATICA
Table[(n - 1) n (n + 1) (4 n^2 + 5 n + 4)/60, {n, 0, 40}] (* Bruno Berselli, Oct 21 2016 *)
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 0, 3, 22, 88, 258}, 40] (* Harvey P. Dale, Jun 04 2023 *)
PROG
(PARI) concat(vector(2), Vec(x^2*(1+x)*(3+x)/(1-x)^6 + O(x^50))) \\ Colin Barker, Oct 21 2016
(Magma) [Binomial(n+1, 3)*(4*n^2 +5*n +4)/10: n in [0..40]]; // G. C. Greubel, Oct 22 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Oct 20 2016
STATUS
approved