login
A277226
Number of inequivalent (modulo C_4 rotations) square n X n grids with squares coming in two colors and four squares have one of the colors.
1
1, 34, 464, 3182, 14769, 53044, 158976, 416140, 980625, 2124310, 4295376, 8199674, 14907809, 25992232, 43700224, 71167704, 112680801, 173990730, 262690000, 388656070, 564571601, 806527964, 1134722304, 1574255332, 2156041329, 2917838014, 3905408976, 5173826770, 6788930625
OFFSET
2,2
COMMENTS
See the k=4 column of table A054772(n, k), with more explanations there.
LINKS
Index entries for linear recurrences with constant coefficients, signature (6,-12,2,27,-36,0,36,-27,-2,12,-6,1).
FORMULA
a(n) = A054772(n, 4) = A054772(n, n^2-4), n >= 2.
From Colin Barker, Oct 09 2016: (Start)
G.f.: x^2*(1+28*x+272*x^2+804*x^3+1150*x^4+804*x^5+272*x^6+28*x^7+x^8) / ((1-x)^9*(1+x)^3).
a(n) = (n^8-6*n^6+14*n^4)/96 for n even.
a(n) = (n^8-6*n^6+14*n^4-6*n^2-3)/96 for n odd. (End)
From Stefan Hollos, Oct 16 2016: (Start)
a(n) = (C(n^2,4) + C(n^2/2,2) + n^2/2)/4 for n even,
a(n) = (C(n^2,4) + C((n^2-1)/2,2) + (n^2-1)/2)/4 for n odd. (End)
MATHEMATICA
CoefficientList[Series[x^2*(1+28*x+272*x^2+804*x^3+1150*x^4+804*x^5 +272*x^6+28*x^7+x^8)/((1-x)^9*(1+x)^3), {x, 0, 50}], x] (* G. C. Greubel, Oct 22 2018 *)
PROG
(PARI) Vec(x^2*(1+28*x+272*x^2+804*x^3+1150*x^4+804*x^5+272*x^6+28*x^7 +x^8)/((1-x)^9*(1+x)^3) + O(x^40)) \\ Colin Barker, Oct 16 2016
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(x^2*(1+28*x+272*x^2+804*x^3+1150*x^4+804*x^5 +272*x^6+28*x^7+x^8)/((1-x)^9*(1+x)^3))); // G. C. Greubel, Oct 22 2018
CROSSREFS
Cf. A054772, A000012 (k=0), A004652 (k=1), A212714 (k=2), A275799 (k=3).
Sequence in context: A271036 A244495 A107917 * A241633 A302383 A303104
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Oct 06 2016
STATUS
approved