login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A071245 a(n) = n*(n-1)*(2*n^2+1)/6. 2
0, 0, 3, 19, 66, 170, 365, 693, 1204, 1956, 3015, 4455, 6358, 8814, 11921, 15785, 20520, 26248, 33099, 41211, 50730, 61810, 74613, 89309, 106076, 125100, 146575, 170703, 197694, 227766, 261145, 298065, 338768, 383504, 432531, 486115, 544530, 608058 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The first differences are given in A277228 as

a convolution of the even indexed triangular numbers (A014105) and the squares (A000290). - J. M. Bergot, Sep 14 2016

REFERENCES

T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..2000

Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).

FORMULA

a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), n>4, a(0)=0, a(1)=0, a(2)=3, a(3)=19, a(4)=66. - Yosu Yurramendi, Sep 03 2013

G.f.: (-3*x^2 - 4*x^3 - x^4)/(-1 + x)^5. - Michael De Vlieger, Sep 14 2016

E.g.f.: (1/6)*x^2*(9 + 10*x + 2*x^2)*exp(x). - G. C. Greubel, Sep 23 2016

MATHEMATICA

Table[n (n - 1) (2 n^2 + 1)/6, {n, 0, 37}] (* or *)

CoefficientList[Series[(-3 x^2 - 4 x^3 - x^4)/(-1 + x)^5, {x, 0, 37}], x] (* Michael De Vlieger, Sep 14 2016 *)

PROG

(MAGMA) [n*(n-1)*(2*n^2+1)/6: n in [0..40]]; // Vincenzo Librandi, Jun 14 2011

(PARI) a(n)=n*(n-1)*(2*n^2+1)/6; \\ Joerg Arndt, Sep 04 2013

CROSSREFS

Cf. A071238, A277228 (first differences).

Sequence in context: A249994 A316601 A178747 * A297744 A091968 A158714

Adjacent sequences:  A071242 A071243 A071244 * A071246 A071247 A071248

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Jun 12 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 17 05:27 EST 2019. Contains 329217 sequences. (Running on oeis4.)