OFFSET
0,2
COMMENTS
REFERENCES
Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 329, 2nd equation.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of f(-x)^8 * (f(-x)^24 + 256 * x * f(-x^2)^24) / (f(-x) * f(-x^2))^8 in powers of x.
a(n) = b(3*n+1) where b() is multiplicative with b(p^e) = 0^e if p=3 and b(p^e) = b(p)*b(p^(e-1)) - p^7*b(p^(e-2)) otherwise.
G.f. is a period 1 Fourier series which satisfies f(-1 / (9 t)) = 6561 (t/i)^8 f(t) where q = exp(2 Pi i t).
EXAMPLE
G.f. = 1 + 232*x + 260*x^2 - 5760*x^3 + 6890*x^4 + 7744*x^5 + 33176*x^6 - 115200*x^7 + 14035*x^8 + ...
G.f. = q + 232*q^4 + 260*q^7 - 5760*q^10 + 6890*q^13 + 7744*q^16 + 33176*q^19 - 115200*q^22 + ...
MATHEMATICA
a[ n_] := If[ n < 0, 0, SeriesCoefficient[ QPochhammer[ x]^8 (1 + 240 Sum[ DivisorSigma[ 3, k] x^k, {k, n}]), {x, 0, n}]];
a[ n_] := SeriesCoefficient[ With[ {A1 = QPochhammer[ x]^8, A2 = QPochhammer[ x^2]^8}, A1 (A1^3 + 256 x A2^3) / (A1 A2)], {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^8 * sum(k=1, n, 240 * sigma(k, 3) * x^k, 1 + A), n))};
(PARI) {a(n) = my(A, A1, A2); if( n<0, 0, A = x * O(x^n); A1 = eta(x + A)^8; A2 = eta(x^2 + A)^8; polcoeff( A1 * (A1^3 + 256 * x * A2^3) / (A1 * A2), n))};
(Magma) A := Basis( CuspForms( Gamma0(9), 8), 95); A[1] + 232*A[4];
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Sep 27 2016
STATUS
approved