

A064715


Smallest member of triple of consecutive numbers each of which is the sum of two different nonzero squares.


2



232, 520, 584, 800, 808, 1096, 1224, 1312, 1600, 1664, 1744, 1800, 1872, 1960, 2248, 2312, 2384, 2600, 2824, 3328, 3392, 3600, 4112, 4176, 4328, 4624, 5120, 5328, 5408, 5904, 6056, 6120, 6352, 6408, 6568, 6920, 8080, 8144, 8296, 8352, 8584, 9160, 9376
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

All terms == 0 mod 8. Is this the same as A073412?  Zak Seidov, Jan 26 2013
This sequence is distinct from A073412 since it does not allow numbers equal to twice a square, like 72, 1152, 2592, 3528, etc.  Giovanni Resta, Jan 29 2013


REFERENCES

David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, Penguin Books Ltd., Middlesex, England, 1997, page 133.  "It is not possible to have 4 such consecutive numbers."


LINKS

Zak Seidov, Table of n, a(n) for n = 1..1200


EXAMPLE

232 = 6^2 + 14^2, 233 = 8^2 + 13^2, and 234 = 3^2 + 15^2.


MATHEMATICA

a = Table[n^2, {n, 1, 100} ]; c = {}; Do[ c = Append[c, a[[i]] + a[[j]]], {i, 1, 100}, {j, 1, i  1} ]; c = Union[c]; c[[ Select[ Range[ Length[c]  2], c[[ # ]] + 2 == c[[ # + 2 ]] & ]]]


CROSSREFS

Cf. A004431.
Sequence in context: A277076 A250645 A179246 * A245006 A252273 A153466
Adjacent sequences: A064712 A064713 A064714 * A064716 A064717 A064718


KEYWORD

nonn


AUTHOR

Robert G. Wilson v, Oct 13 2001


STATUS

approved



