login
A276083
a(0) = 0, a(2n) = A255411(a(n)), a(2n+1) = 1+A153880(a(n)).
5
0, 1, 4, 3, 18, 13, 16, 9, 96, 73, 76, 51, 90, 61, 64, 33, 600, 481, 484, 363, 498, 373, 376, 249, 576, 433, 436, 291, 450, 301, 304, 153, 4320, 3601, 3604, 2883, 3618, 2893, 2896, 2169, 3696, 2953, 2956, 2211, 2970, 2221, 2224, 1473, 4200, 3361, 3364, 2523, 3378, 2533, 2536, 1689, 3456, 2593, 2596, 1731, 2610, 1741, 1744, 873, 35280, 30241
OFFSET
0,3
FORMULA
a(0) = 0, a(2n) = A255411(a(n)), a(2n+1) = 1+A153880(a(n)).
Other identities. For all n >= 0:
a(n) = A225901(A276082(n)).
PROG
(Scheme, with memoization-macro definec)
(definec (A276083 n) (cond ((zero? n) n) ((even? n) (A255411 (A276083 (/ n 2)))) (else (+ 1 (A153880 (A276083 (/ (- n 1) 2)))))))
(Python)
from sympy import factorial as f
def a007623(n, p=2): return n if n<p else a007623(n//p, p+1)*10 + n%p
def a255411(n):
x=(str(a007623(n)) + '0')
y="".join(str(int(i) + 1) if int(i)>0 else '0' for i in x)[::-1]
return 0 if n==0 else sum([int(y[i])*f(i + 1) for i in range(len(y))])
def a153880(n):
x=(str(a007623(n)) + '0')[::-1]
return 0 if n==0 else sum([int(x[i])*f(i + 1) for i in range(len(x))])
def a(n): return 0 if n==0 else a255411(a(n//2)) if n%2==0 else 1 + a153880(a((n - 1)//2))
print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 20 2017
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Aug 21 2016
STATUS
approved