login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A272230 E.g.f.: 2*exp(x)/(exp(2*x)+1+2*x). 1
1, -1, 3, -15, 93, -725, 6815, -74627, 933849, -13148361, 205690779, -3539545559, 66446203637, -1351309774685, 29595401433975, -694475294514315, 17382734374217265, -462283425487469585, 13017336622169166515, -386916316537712637215, 12105656546432789499405, -397693919494074869853285 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Empirically, for odd n, n|a(n) and for even n, (n-1)|a(n).

LINKS

Robert Israel, Table of n, a(n) for n = 0..418

FORMULA

a(n) = 1-2n*a(n-1)-Sum_{k=0..n-2}binomial(n,k)*2^(n-k-1)*a(k)

a(n) = Sum_{k=0..n} Sum_{j=0..k} Sum_{i=0..n} binomial(n,k)*binomial(k+i,i)*binomial(n,i)(i!*(-1)^(i+j)*(2j+1)^(n-i))/(2^k)

a(n) ~ n! * (-1)^n*sqrt(LambertW(exp(-1)))*2^(n+1) / (1+LambertW(exp(-1)))^(n+2). - Vaclav Kotesovec, May 03 2016

MAPLE

S:= series(2*exp(x)/(exp(2*x)+1+2*x), x, 31):

seq(coeff(S, x, j)*j!, j=0..30); # Robert Israel, May 24 2016

MATHEMATICA

a[n_]:=Sum[Sum[Sum[Binomial[k, j]*Binomial[k + i, i]*Binomial[n, i]*((i!*(-1)^(i + j)*(2 j + 1)^(n - i))/(2^k)), {i, 0, n}], {j, 0, k}], {k, 0, n}]

CROSSREFS

Cf. A000364, A122045.

Sequence in context: A203014 A060066 A206177 * A308457 A241711 A243245

Adjacent sequences:  A272227 A272228 A272229 * A272231 A272232 A272233

KEYWORD

sign

AUTHOR

Christopher Ernst, Apr 22 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 22:29 EST 2019. Contains 329850 sequences. (Running on oeis4.)