This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A308457 Expansion of e.g.f. (1/(1 - x)) * Product_{k>=2} 1/(1 - x^k)^(phi(k)/2), where phi() is the Euler totient function (A000010). 1
 1, 1, 3, 15, 93, 765, 6615, 73395, 855225, 11348505, 163593675, 2633729175, 44537325525, 829112008725, 16299062754975, 340762189642875, 7597436750528625, 178862527106888625, 4426363064514265875, 115222810432347993375, 3139125774622690978125 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..435 FORMULA E.g.f.: exp(Sum_{k>=1} A057661(k)*x^k/k). E.g.f.: exp(Sum_{k>=1} A051193(k)*x^k/k^2). E.g.f.: d/dx ( exp(arctanh(x)) ) * Product_{k>=3} 1/(1 - x^k)^A023022(k). a(n) ~ A * exp(3^(4/3) * Zeta(3)^(1/3) * n^(2/3) / (2*Pi)^(2/3) - n - 1/12) * n^(n + 1/36) / (2^(1/9) * 3^(19/36) * (Pi*Zeta(3))^(1/36)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, May 28 2019 E.g.f.: Product_{k>=1} 1/(1 - x^k)^(A023896(k)/k). - Ilya Gutkovskiy, May 28 2019 MATHEMATICA nmax = 20; CoefficientList[Series[1/(1 - x) Product[1/(1 - x^k)^(EulerPhi[k]/2), {k, 2, nmax}], {x, 0, nmax}], x] Range[0, nmax]! nmax = 20; CoefficientList[Series[Exp[Sum[Sum[LCM[k, j], {j, 1, k}] x^k/k^2, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]! a[n_] := a[n] = Sum[Total[Numerator[Range[k]/k]] k! Binomial[n - 1, k - 1] a[n - k]/k, {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 20}] CROSSREFS Cf. A000010, A023022, A023896, A051193, A057661, A061255. Sequence in context: A060066 A206177 A272230 * A241711 A243245 A128240 Adjacent sequences:  A308454 A308455 A308456 * A308458 A308459 A308460 KEYWORD nonn AUTHOR Ilya Gutkovskiy, May 27 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 14 03:31 EST 2019. Contains 329978 sequences. (Running on oeis4.)