This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A271700 Triangle read by rows, T(n,k) = Sum_{j=0..n} (-1)^(n-j)*C(-j-1,-n-1)*S1(k,j), S1 the Stirling cycle numbers A132393, for n>=0 and 0<=k<=n. 0
 1, 1, 1, 1, 2, 3, 1, 3, 6, 16, 1, 4, 10, 30, 115, 1, 5, 15, 50, 205, 1021, 1, 6, 21, 77, 336, 1750, 10696, 1, 7, 28, 112, 518, 2814, 17766, 128472, 1, 8, 36, 156, 762, 4308, 28050, 207942, 1734447, 1, 9, 45, 210, 1080, 6342, 42528, 322860, 2746815, 25937683 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS EXAMPLE Triangle starts: [1] [1, 1] [1, 2, 3] [1, 3, 6,  16] [1, 4, 10, 30,  115] [1, 5, 15, 50,  205, 1021] [1, 6, 21, 77,  336, 1750, 10696] [1, 7, 28, 112, 518, 2814, 17766, 128472] MAPLE T := (n, k) -> add(abs(Stirling1(k, j))*binomial(-j-1, -n-1)*(-1)^(n-j), j=0..n); seq(seq(T(n, k), k=0..n), n=0..9); MATHEMATICA Flatten[Table[Sum[(-1)^(n-j)Binomial[-j-1, -n-1] Abs[StirlingS1[k, j]], {j, 0, n}], {n, 0, 9}, {k, 0, n}]] CROSSREFS A000027 (col. 1), A000217, A161680 (col. 2), A005581 (col. 3), A211210 (diag. n,n), A211211 (diag. n,n-1). Sequence in context: A113592 A271702 A292915 * A136555 A188107 A174014 Adjacent sequences:  A271697 A271698 A271699 * A271701 A271702 A271703 KEYWORD nonn,tabl AUTHOR Peter Luschny, Apr 14 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 19 22:55 EDT 2019. Contains 328244 sequences. (Running on oeis4.)