login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A271702 Triangle read by rows, T(n,k) = Sum_{j=0..n} (-1)^(n-j)*C(-j-1,-n-1)*S2(k,j), S2 the Stirling set numbers A048993, for n>=0 and 0<=k<=n. 0
1, 1, 1, 1, 2, 3, 1, 3, 6, 13, 1, 4, 10, 26, 71, 1, 5, 15, 45, 140, 456, 1, 6, 21, 71, 246, 887, 3337, 1, 7, 28, 105, 399, 1568, 6405, 27203, 1, 8, 36, 148, 610, 2584, 11334, 51564, 243203, 1, 9, 45, 201, 891, 4035, 18849, 91101, 455712, 2357356 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

LINKS

Table of n, a(n) for n=0..54.

FORMULA

T(n,k) = Sum_{j=0..k} C(n,j) * S2(k,j). - Alois P. Heinz, Sep 03 2019

EXAMPLE

Triangle starts:

[1]

[1, 1]

[1, 2, 3]

[1, 3, 6, 13]

[1, 4, 10, 26, 71]

[1, 5, 15, 45, 140, 456]

[1, 6, 21, 71, 246, 887, 3337]

[1, 7, 28, 105, 399, 1568, 6405, 27203]

MAPLE

T := (n, k) -> add(Stirling2(k, j)*binomial(-j-1, -n-1)*(-1)^(n-j), j=0..n):

seq(seq(T(n, k), k=0..n), n=0..9);

MATHEMATICA

Flatten[Table[Sum[(-1)^(n-j) Binomial[-j-1, -n-1] StirlingS2[k, j], {j, 0, n}], {n, 0, 9}, {k, 0, n}]]

CROSSREFS

A000012 (col. 0), A000027 (col. 1), A000217 (col. 2), A008778 (col. 3), A122455 (diag. n,n), A134094 (diag. n,n-1).

Cf. A048993.

Sequence in context: A027555 A059481 A113592 * A292915 A271700 A136555

Adjacent sequences:  A271699 A271700 A271701 * A271703 A271704 A271705

KEYWORD

nonn,tabl

AUTHOR

Peter Luschny, Apr 14 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 22 16:31 EST 2019. Contains 329396 sequences. (Running on oeis4.)