login
A268126
Numbers n such that phi(n) = 4*phi(n-1).
1
1261, 13651, 17557, 18721, 24511, 42121, 113611, 244531, 266071, 712081, 749911, 795691, 992251, 1080721, 1286731, 1458271, 1849471, 2271061, 2457691, 3295381, 3370771, 3414841, 3714751, 4061971, 4736491, 5314051, 5827081, 6566911, 6935083, 7303981, 7864081
OFFSET
1,1
COMMENTS
See A266276(n) = the smallest numbers k such that phi(k) = n * phi(k-1) for n >=1: 2, 3, 7, 1261, 11242771, ...
FORMULA
a(n) = A172314(n) + 1. - Michel Marcus, Jan 27 2016
EXAMPLE
1261 is in the sequence because phi(1261) = 1152 = 4*phi(1260) = 4*288.
MATHEMATICA
Select[Range@10000000, EulerPhi@# == 4 EulerPhi[# - 1] &] (* Vincenzo Librandi, Jan 27 2016 *)
PROG
(Magma) [n: n in [2..10^7] | EulerPhi(n) eq 4*EulerPhi(n-1)]
(PARI) isok(n) = (eulerphi(n) == 4*eulerphi(n-1)); \\ Michel Marcus, Jan 27 2016
CROSSREFS
Cf. A000010, A171271 (numbers n such that phi(n) = 2*phi(n-1)), A266268 (numbers n such that phi(n) = 3*phi(n-1)), A266276.
Cf. A256937.
Sequence in context: A035861 A230467 A038651 * A045183 A252514 A252507
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Jan 26 2016
STATUS
approved