

A171271


Numbers n such that phi(n)=2*phi(n1).


11



3, 5, 17, 155, 257, 287, 365, 805, 1067, 2147, 3383, 4551, 6107, 7701, 8177, 9269, 11285, 12557, 12971, 16403, 19229, 19277, 20273, 25133, 26405, 27347, 29155, 29575, 35645, 36419, 38369, 39647, 40495, 47215, 52235, 54653, 65537, 84863
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Theorem: A prime p is in the sequence iff p is a Fermat prime.
Proof: If p=2^2^n+1 is prime (Fermat prime) then phi(p)=2^2^n=2* phi(2^2^n)=2*phi(p1), so p is in the sequence. Now if p is a prime term of the sequence then phi(p)=2*phi(p1) so p1=2*phi(p1) and we deduce that p1=2^m hence p is a Fermat prime.


LINKS

Hiroaki Yamanouchi, Table of n, a(n) for n = 1..5416


FORMULA

a(n) = A050472(n) + 1.  Ray Chandler, May 01 2015


MATHEMATICA

Select[Range[85000], EulerPhi[ # ]==2EulerPhi[ #1]&]


PROG

(MAGMA) [n: n in [2..2*10^5]  EulerPhi(n) eq 2*EulerPhi(n1)]; // Vincenzo Librandi, May 17 2015


CROSSREFS

Cf. A019434, A050472, A171262.
Sequence in context: A084723 A107312 A083213 * A056826 A278138 A273870
Adjacent sequences: A171268 A171269 A171270 * A171272 A171273 A171274


KEYWORD

easy,nonn


AUTHOR

Farideh Firoozbakht, Feb 23 2010


STATUS

approved



