The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A171271 Numbers n such that phi(n)=2*phi(n-1). 11
 3, 5, 17, 155, 257, 287, 365, 805, 1067, 2147, 3383, 4551, 6107, 7701, 8177, 9269, 11285, 12557, 12971, 16403, 19229, 19277, 20273, 25133, 26405, 27347, 29155, 29575, 35645, 36419, 38369, 39647, 40495, 47215, 52235, 54653, 65537, 84863 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Theorem: A prime p is in the sequence iff p is a Fermat prime. Proof: If p=2^2^n+1 is prime (Fermat prime) then phi(p)=2^2^n=2* phi(2^2^n)=2*phi(p-1), so p is in the sequence. Now if p is a prime term of the sequence then phi(p)=2*phi(p-1) so p-1=2*phi(p-1) and we deduce that p-1=2^m hence p is a Fermat prime. LINKS Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 5416 terms from Hiroaki Yamanouchi) FORMULA a(n) = A050472(n) + 1. - Ray Chandler, May 01 2015 MATHEMATICA Select[Range[85000], EulerPhi[ # ]==2EulerPhi[ #-1]&] Flatten[Position[Partition[EulerPhi[Range[90000]], 2, 1], _?(2#[[1]] == #[[2]]&), 1, Heads->False]]+1 (* Harvey P. Dale, Sep 09 2017 *) PROG (MAGMA) [n: n in [2..2*10^5] | EulerPhi(n) eq 2*EulerPhi(n-1)]; // Vincenzo Librandi, May 17 2015 CROSSREFS Cf. A019434, A050472, A171262. Sequence in context: A096178 A107312 A083213 * A056826 A278138 A273870 Adjacent sequences:  A171268 A171269 A171270 * A171272 A171273 A171274 KEYWORD easy,nonn AUTHOR Farideh Firoozbakht, Feb 23 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 8 05:25 EDT 2020. Contains 336290 sequences. (Running on oeis4.)