login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A256937 Numbers n such that phi(n) = 4*phi(n+1). 4
629, 1469, 85139, 100889, 139859, 154979, 168149, 304079, 396899, 838199, 1107413, 1323449, 1465463, 2088839, 2160899, 2504879, 2684879, 2693249, 2800181, 3404609, 3512249, 3576869, 3885881, 4241819, 4500509, 4620659, 4822649, 5530709, 5805449 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Mauro Fiorentini, Table of n, a(n) for n = 1..154 (all terms for n up to 10^9).

EXAMPLE

phi(629) = 576 = 4*phi(630).

MAPLE

A:= NULL:

y:= numtheory:-phi(1):

for n from 1 to 10^6 do

x:= numtheory:-phi(n+1);

if y = 4*x then A:= A, n fi;

y:= x;

od:

A;  # Robert Israel, Apr 15 2015

MATHEMATICA

Select[Range@ 1000000, EulerPhi@ # == 4 EulerPhi[# + 1] &] (* Michael De Vlieger, Apr 13 2015 *)

Position[Partition[EulerPhi[Range[6*10^6]], 2, 1], _?(#[[1]]==4#[[2]]&), {1}, Heads->False]//Flatten (* Harvey P. Dale, Sep 18 2016 *)

PROG

(PARI) s=[]; for(n=1, 1000000, if(eulerphi(n)==4*eulerphi(n+1), s=concat(s, n))); s \\ Colin Barker, Apr 13 2015

(MAGMA) [n: n in [1..10^7] | EulerPhi(n) eq 4*EulerPhi(n+1)]; // Vincenzo Librandi, Apr 14 2015

(Sage) [n for n in (1..1000000) if euler_phi(n) == 4*euler_phi(n+1)]; # Bruno Berselli, Apr 14 2015

CROSSREFS

Cf. A171262, A256907.

Sequence in context: A224603 A261708 A098261 * A177421 A173423 A295769

Adjacent sequences:  A256934 A256935 A256936 * A256938 A256939 A256940

KEYWORD

nonn

AUTHOR

Mauro Fiorentini, Apr 13 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 1 10:33 EDT 2020. Contains 333159 sequences. (Running on oeis4.)