login
A252514
T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with every 3X3 subblock row and column sum equal to 0 2 5 6 or 7 and every 3X3 diagonal and antidiagonal sum not equal to 0 2 5 6 or 7
9
1262, 1515, 1515, 2055, 1644, 2055, 3326, 3980, 3980, 3326, 5508, 9277, 11476, 9277, 5508, 9526, 25197, 28877, 28877, 25197, 9526, 17709, 76113, 83016, 68163, 83016, 76113, 17709, 33357, 231372, 252551, 188123, 188123, 252551, 231372, 33357, 62632
OFFSET
1,1
COMMENTS
Table starts
...1262....1515.....2055.....3326......5508......9526......17709.......33357
...1515....1644.....3980.....9277.....25197.....76113.....231372......698936
...2055....3980....11476....28877.....83016....252551.....767176.....2326656
...3326....9277....28877....68163....188123....584827....1808374.....5522057
...5508...25197....83016...188123....505129...1629431....5219625....16419574
...9526...76113...252551...584827...1629431...5381168...17585706....57799811
..17709..231372...767176..1808374...5219625..17585706...59046724...209788816
..33357..698936..2326656..5522057..16419574..57799811..209788816...864964151
..62632.2121821..7067545.16698268..50479820.185530073..715958046..3397105337
.119155.6483996.21555438.50754770.156986808.599739636.2479308557.14447364814
LINKS
FORMULA
Empirical for column k:
k=1: [linear recurrence of order 61] for n>68
k=2: [order 34] for n>41
k=3: [order 42] for n>47
k=4: [order 45] for n>50
k=5: [order 66] for n>71
EXAMPLE
Some solutions for n=4 k=4
..3..0..2..0..0..2....2..1..3..1..2..2....3..2..2..2..3..2....1..3..1..1..0..1
..1..1..0..1..1..0....2..3..1..3..1..2....1..3..1..3..1..2....1..0..1..1..0..1
..1..1..0..1..1..0....3..1..3..1..3..2....3..1..3..1..3..1....0..2..0..0..2..3
..0..0..2..3..0..2....1..3..1..3..1..3....1..3..1..3..1..3....1..0..1..1..0..1
..1..1..0..1..1..0....3..1..3..1..3..1....2..1..3..1..3..2....1..0..1..1..3..1
..1..1..0..1..1..0....1..2..2..2..1..3....2..3..1..3..2..2....0..2..0..0..2..0
CROSSREFS
Sequence in context: A038651 A268126 A045183 * A252507 A252506 A205762
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 18 2014
STATUS
approved