login
A267479
Number A(n,k) of words on {1,1,2,2,...,n,n} with longest increasing subsequence of length <= k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
8
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 6, 1, 0, 1, 1, 6, 43, 1, 0, 1, 1, 6, 90, 352, 1, 0, 1, 1, 6, 90, 1879, 3114, 1, 0, 1, 1, 6, 90, 2520, 47024, 29004, 1, 0, 1, 1, 6, 90, 2520, 102011, 1331664, 280221, 1, 0, 1, 1, 6, 90, 2520, 113400, 5176504, 41250519, 2782476, 1, 0
OFFSET
0,13
FORMULA
A(n,k) = Sum_{i=0..k} A267480(n,i).
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, ...
0, 1, 6, 6, 6, 6, 6, ...
0, 1, 43, 90, 90, 90, 90, ...
0, 1, 352, 1879, 2520, 2520, 2520, ...
0, 1, 3114, 47024, 102011, 113400, 113400, ...
0, 1, 29004, 1331664, 5176504, 7235651, 7484400, ...
CROSSREFS
Columns k=0-4 give: A000007, A000012, A220097, A266734, A266735.
Main diagonal gives A000680.
First lower diagonal gives A267532.
Sequence in context: A340206 A196603 A318458 * A285824 A269955 A376731
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jan 15 2016
STATUS
approved