This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A196603 Decimal expansion of the least x>0 satisfying sec(x)=2x. 7
 6, 1, 0, 0, 3, 1, 2, 8, 4, 4, 6, 4, 1, 7, 5, 9, 7, 5, 3, 7, 0, 9, 6, 3, 0, 7, 3, 5, 1, 3, 4, 1, 0, 3, 2, 4, 6, 7, 3, 7, 2, 0, 9, 7, 9, 1, 1, 2, 1, 6, 9, 2, 3, 7, 8, 6, 3, 7, 5, 1, 6, 0, 7, 5, 3, 2, 8, 0, 9, 4, 8, 8, 6, 1, 0, 5, 1, 0, 6, 8, 8, 7, 8, 1, 4, 2, 4, 4, 1, 6, 0, 3, 4, 4, 4, 4, 1, 2, 4, 4 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS EXAMPLE x=0.61003128446417597537096307351341032... MATHEMATICA Plot[{1/x, Cos[x], 2 Cos[x], 3 Cos[x], 4 Cos[x]}, {x, 0, 2 Pi}] t = x /. FindRoot[1/x == Cos[x], {x, .1, 5}, WorkingPrecision -> 100] RealDigits[t]  (* A133868 *) t = x /. FindRoot[1/x == 2 Cos[x], {x, .5, .7}, WorkingPrecision -> 100] RealDigits[t]  (* A196603 *) t = x /. FindRoot[1/x == 3 Cos[x], {x, .3, .4}, WorkingPrecision -> 100] RealDigits[t]  (* A196604 *) t = x /. FindRoot[1/x == 4 Cos[x], {x, .1, .3}, WorkingPrecision -> 100] RealDigits[t]  (* A196605 *) t = x /. FindRoot[1/x == 5 Cos[x], {x, .15, .23}, WorkingPrecision -> 100] RealDigits[t]  (* A196606 *) t = x /. FindRoot[1/x == 6 Cos[x], {x, .1, .2}, WorkingPrecision -> 100] RealDigits[t]  (* A196607 *) CROSSREFS Cf. A196610. Sequence in context: A060251 A212528 A059117 * A198754 A021625 A011221 Adjacent sequences:  A196600 A196601 A196602 * A196604 A196605 A196606 KEYWORD nonn,cons AUTHOR Clark Kimberling, Oct 04 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .